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ABSTRACT

We develop a framework for large margin classification by

Gaussian mixture models (GMMs). Large margin GMMs

have many parallels to support vector machines (SVMs) but

use ellipsoids to model classes instead of half-spaces. Model

parameters are trained discriminatively to maximize the mar-

gin of correct classification, as measured in terms of Maha-

lanobis distances. The required optimization is convex over

the model’s parameter space of positive semidefinite matrices

and can be performed efficiently. Large margin GMMs are

naturally suited to large problems in multiway classification;

we apply them to phonetic classification and recognition on

the TIMIT database. On both tasks, we obtain significant im-

provement over baseline systems trained by maximum likeli-

hood estimation. For the problem of phonetic classification,

our results are competitive with other state-of-the-art classi-

fiers, such as hidden conditional random fields.

1. INTRODUCTION

Much of the acoustic-phonetic modeling in automatic speech

recognition (ASR) is handled by Gaussian mixture models

(GMMs) [1]. It is widely recognized that maximum likeli-

hood (ML) estimation of GMMs does not directly optimize

the performance of these models as classifiers. It is therefore

of interest to develop alternative learning paradigms that op-

timize discriminative measures of performance [1, 2, 3].

Support vector machines (SVMs) currently provide state-

of-the-art performance for many problems in pattern recog-

nition [4]. The simplest setting for SVMs is binary classifi-

cation. If the positively and negatively labeled examples are

linearly separable, SVMs compute the linear decision bound-

ary that maximizes the margin of correct classification—that

is, the distance of the closest example(s) to the separating hy-

perplane. If the labeled examples are not linearly separable,

the kernel trick can be used to map the examples into a non-

linear feature space and to compute the maximum margin hy-

perplane in this space. Alternately, or in conjunction with the

kernel trick, the optimization for SVMs can be relaxed to per-

mit margin violations (i.e., incorrectly labeled examples) in

the training data.

For various reasons, it can be challenging to apply SVMs

to large problems in multiway as opposed to binary classi-

fication. First, to apply the kernel trick (which is required

for nonlinear decision boundaries), one must construct a large

kernel matrix with as many rows and columns as training ex-

amples. Second, the training complexity increases with the

number of classes, depending to some extent on the way that

binary SVMs are generalized to multiway classification.

In this paper, we develop a framework for large margin

classification by GMMs. As in SVMs, our approach is based

on the idea of margin maximization. Intuitively, we show how

to train “large margin” GMMs that maximize the Mahanalo-

bis distance of labeled examples from the decision boundaries

that define competing classes. As in SVMs, the parameters

of large margin GMMs are trained by a convex optimization

that focuses on examples near the decision boundaries. After

developing the basic approach in section 2, we discuss exten-

sions for segmental training and outlier handling in section 3

and report experimental results on phonetic classification and

recognition in section 4.

Our approach has certain advantages over SVMs for large

problems in multiway classification. For example, the classes

in large margin GMMs are modeled by ellipsoids—which in-

duce nonlinear decision boundaries in the input space—as op-

posed to the half-spaces and hyperplanes in SVMs. Because

the kernel trick is not necessary to induce nonlinear decision

boundaries, large margin GMMs are more readily trained on

very large and difficult data sets, as arise in ASR.

2. LARGE MARGIN MIXTURE MODELS

We begin by describing large margin GMMs in the simple

setting where each class is modeled by a single ellipsoid. We

then extend this framework to the case where each class is

modeled by one or more ellipsoids. Finally, we relate our

framework to other discriminative paradigms that have been

proposed for training GMMs.
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2.1. Large margin classification

The simplest large margin GMM represents each class of la-

beled examples by a single ellipsoid. Each ellipsoid is pa-

rameterized by a vector “centroid” µ ∈ �d and a positive

semidefinite “orientation” matrix Ψ ∈ �d×d. These param-

eters are analogous to the means and inverse covariance ma-

trices of multivariate Gaussians, but they are not estimated in

the same way. In addition, a nonnegative scalar offset θ ≥ 0
for each class is used in the scoring procedure.

Let (µc,Ψc,θc) denote the centroid, orientation matrix,

and scalar offset representing examples in class c. We label

an example x ∈ �d by whichever ellipsoid has the smallest

Mahanalobis distance (plus offset) to its centroid:

y = argmin
c

{
(x−µc)

TΨc(x−µc) + θc

}
. (1)

The goal of learning is to estimate the parameters (µc,Ψc,θc)
for each class of labeled examples that optimize the perfor-

mance of this decision rule.

It is useful to collect the ellipsoid parameters of each class

in a single enlarged (d+1)×(d+1) positive semidefinite matrix:

Φc =
[

Ψc −Ψc µc

−µT
c Ψc µT

c Ψcµc + θc

]
. (2)

We can then rewrite the decision rule in eq. (1) as simply:

y = argmin
c

{
zTΦc z

}
where z =

[
x
1

]
. (3)

Here, z ∈ �d+1 is the vector created by appending a unit

element to x ∈ �d. In this transformed representation,

the goal of learning is simply to estimate the single matrix

Φc ∈ �(d+1)×(d+1) for each class of labeled examples.

We now consider the problem of learning in more detail.

Let {(xn, yn)}N
n=1 denote a set of N labeled examples drawn

from C classes, where xn ∈ �d and yn ∈ {1, 2, . . . , C}.

In large margin GMMs, we seek matrices Φc such that all

the examples in the training set are correctly classified by a

large margin—i.e., situated far from the decision boundaries

that define competing classes. For the nth example with class

label yn, this condition can be written as:

∀c �= yn, zT
nΦczn ≥ 1 + zT

nΦyn
zn. (4)

Eq. (4) states that for each competing class c �= yn, the Maha-

lanobis distance (plus offset) to the cth centroid exceeds the

Mahalanobis distance (plus offset) to the target centroid by a

margin of at least one unit.

We adopt a convex loss function for training large margin

GMMs. Analogous to SVMs, the loss function has two terms,

one that penalizes margin violations of eq. (4) and one that

regularizes the matrices Φc. Letting [f ]+ =max(0,f) denote

the so-called “hinge” function, we can write the loss function

for large margin GMMs as:

L = γ
∑

n

∑
c�=yn

[
1+zT

n (Φyn
− Φc)zn

]
+
+

∑
c

trace(Ψc). (5)

The second term regularizes the orientation matrices Ψc

which appear in the d × d upper left blocks of Φc. In real-
izable settings, where all the examples can be correctly clas-

sified, the second term favors the “minimum trace” Maha-

lanobis metrics consistent with the unit margin constraints in

eq. (4). The relative weight of the two terms is controlled by

a hyperparameter γ>0 set by cross-validation.

The loss function in eq. (5) is a piecewise linear, convex
function of the matrices Φc, which are further constrained to

be positive semidefinite. Its optimization can thus be formu-

lated as a problem in semidefinite programming [5]. Such

problems can be generically solved by interior point algo-

rithms with polynomial time guarantees (though we imple-

mented a special-purpose solver using gradient-based meth-

ods for the results in this paper). Most importantly, eq. (5)

has the desirable property that its optimization is not plagued

by spurious local minima.

2.2. Mixture models

We now extend the previous model to represent each class by

multiple ellipsoids. This is analogous to modeling each class

by its own GMM, as opposed to a single Gaussian. Let Φcm

denote the matrix for the mth ellipsoid in class c. The most

straightforward extension is to imagine that each example xn

has not only a class label yn, but also a mixture component

label mn. The latter labels are not provided a priori, but we

can generate “proxy” labels by fitting a GMM to the exam-

ples in each class by ML estimation, then for each example,

computing the mixture component with the highest posterior

probability under this GMM. Given joint labels (yn,mn), we

replace the large margin criterion in eq. (4) by:

∀c �= yn, − log
∑
m

e−zT
nΦcmzn ≥ 1 + zT

nΦynmn
zn. (6)

Eq. (6) implies that the match to any centroid m in any com-

peting class c �= yn is worse than the match to the target cen-

troid mn in class yn by a margin of at least one unit. To see

this, note that minm am ≥ − log
∑

m e−am .

The loss function for mixture models is a simple exten-

sion of eq. (5). We replace the hinge loss in the first term

by [1 + zT
nΦynmn

zn + log
∑

m e−zT
nΦcmzn ]+, which penal-

izes violations of the margin inequalities in eq. (6). The regu-

larizer in the second term changes only to sum over different

classes and mixture components:
∑

cm trace(Ψcm). Due to

the “softmin” operation over mixture components, the result-

ing loss function is no longer piecewise linear in the matri-

ces Φcm; however, it is easy to verify that it remains convex.

Thus, even the optimization of this more general loss function

for large margin GMMs is quite tractable.

2.3. Relation to previous work

Our framework differs in important aspects from previous

frameworks for discriminative training of GMMs. Suppose
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the class-conditional densities p(x|y) are modeled by GMMs.

One common approach to discriminative training [2] esti-

mates the means, covariance matrices, and mixture weights

of these models that maximize the conditional log-likelihood∑
n log p(yn|xn). Such models generally outperform GMMs

that are estimated by maximizing the joint log-likelihood∑
n log p(xn, yn). In contrast to our framework, however, the

optimization of GMM parameters in this way is not convex.

Moreover, as a loss function, the conditional log-likelihood

does not focus on examples near the decision boundaries nor

incorporate the idea of a large margin.

Recently, Liu et al [6] proposed a margin-based frame-

work for discriminative training of GMMs in continuous-

density hidden Markov models (HMMs). Unlike our work,

however, the optimization in their framework is not convex,

and they focus on GMMs with diagonal covariance matrices.

Finally, we revisit the comparison between large margin

GMMs and SVMs, as discussed in section 1. In large margin

GMMs, classes are modeled by one or more ellipsoids (as op-

posed to half-spaces); hence, the kernel trick is not required to

induce nonlinear decision boundaries. Though one can gen-

erate quadratic decision boundaries in SVMs using polyno-

mial kernels, large margin GMMs differ from such SVMs by

restricting their quadratic forms to be positive semidefinite,

thus imagining the support of each class as some bounded re-

gion in input space. In addition, the large margin GMMs in

section 2.2, with multiple ellipsoids per class, cannot be rep-

resented by SVMs with polynomial kernels.

3. EXTENSIONS

Two further extensions of large margin GMMs are impor-

tant for problems in ASR: handling of outliers, and segmental

training. We describe each extension in isolation, assuming

for simplicity that each class is modeled by a single ellip-

soid, as in section 2.1. The generalization to the large margin

GMMs described in section 2.2 is straightforward, as is the

handling of outliers in combination with segmental training.

3.1. Handling of outliers

Many discriminative learning algorithms are sensitive to out-

liers. The loss function in eq. (5), in particular, does not

closely track the classification error rate when the training

data has many outliers. We adopt a simple strategy to detect

outliers and reduce their malicious effect on learning.

Outliers are detected using ML estimates of the mean and

covariance matrix of each class. These estimates are used to

initialize matrices ΦML
c of the form in eq. (2). Then, for each

example xn, we compute the accumulated hinge loss incurred

by violations of the large margin constraints in eq. (4):

hML
n =

∑
c�=yn

[
1+zT

n (ΦML
yn

− ΦML
c )zn

]
+

(7)

Note that hML
n ≥ 0 measures the decrease in the loss function

when an initially misclassified example xn is corrected during

the course of learning. We associate outliers with large values

of hML
n .

Outliers distort the learning process by diverting its fo-

cus away from misclassified examples that could otherwise be

easily corrected. In particular, correcting one badly misclas-

sified outlier decreases the cost function proposed in eq. (5)

more than correcting multiple examples that lie just barely

on the wrong side of a decision boundary. To fix this sit-

uation, we reweight the hinge loss terms in eq. (5) involv-

ing example xn by a multiplicative factor of min(1, 1/hML
n ).

This reweighting equalizes the losses incurred by all initially

misclassified examples, thus reducing the malicious effect of

outliers. We compute the weighting factors once from the ML

estimates and hold them fixed during discriminative training.

In practice, this scheme appears to work very satisfactorily.

3.2. Segmental training

The margin constraints in eq. (4) apply to individually labeled

examples. We can also relax them to apply, collectively, to

multiple examples known to share the same class label. This

is useful for ASR, where we can train on variable-length “seg-

ments”, consisting of multiple consecutive analysis frames,

all of which belong to the same phoneme. Specifically, let p
index the � frames in the nth phonetic segment {xnp}�

p=1. For

segmental training, we rewrite the constraints in eq. (4) as:

∀c �= yn,
1
�

∑
p

zT
npΦcznp ≥ 1 +

1
�

∑
p

zT
npΦyn

znp, (8)

where the scores on both sides have been normalized by the

segment length. The segment-based constraint in eq. (8) is

especially well motivated if a segment-based decision rule is

used for classification (e.g., y = argminc

∑
p zT

p Φczp) as

opposed to the frame-based rule in eq. (1).

4. EXPERIMENTAL RESULTS

We applied large margin GMMs to well-benchmarked prob-

lems in phonetic classification and recognition on the TIMIT

database [3, 7, 8, 9]. We used the standard partition of train-

ing and test data and the same development set as in earlier

work [3, 9]. All sa sentences were excluded. We mapped the

61 phonetic labels in TIMIT to 48 classes and trained ML and

large margin GMMs for each class. Results were evaluated by

mapping these 48 classes to 39 phones to remove further con-

fusions, as in previous benchmarks. Our front end computed

mel-frequency cepstral coefficients (MFCCs) with 25 ms win-

dows at a 10 ms frame rate. We retained the first 13 MFCC

coefficients of each frame, along with their first and second

time derivatives. GMMs modeled these 39-dimensional fea-

ture vectors after they were whitened by PCA.
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# of mixture classification recognition

components baseline margin baseline margin

1 32.1% 24.3% 40.1% 34.7%

2 30.1% 23.4% 36.5% 33.5%

4 27.8% 22.3% 34.7% 32.7%

8 25.9% 21.1% 32.7% 31.1%

16 26.0% 21.4% 31.7% 30.1%

Table 1. Error rates for phonetic classification and recognition on

the TIMIT database. Large margin GMMs are compared to baseline

GMMs trained by ML estimation. See text for details.

4.1. Phonetic classification

Phonetic classification is an artificial but instructive prob-

lem in ASR. One assumes in this case that the speech has

been correctly segmented into phonetic units, but that the

phonetic class label of each segment is unknown. The in-

put to the classifier is the “segment” of consecutive analysis

frames that spans precisely one phoneme. We trained large

margin GMMs using the segment-based margin criteria in

section 3.2 and compared them to baseline (full covariance)

GMMs trained by ML estimation. The baseline GMMs were

also used to determine the proxy labels for mixture compo-

nents in eq. (6) and to detect and reweight outliers, using

eq. (7). We used the development data set to choose the hyper-

parameter γ > 0 in eq. (5), to tune a unigram language model,

and to perform early stopping of the optimization procedure.

The training time on 1.1M frames (roughly, 140K segments)

ranged from 2-9 hours depending on the model size.

Table 1 shows the percentage of incorrectly classified pho-

netic segments on the TIMIT test set. Large margin GMMs

consistently and significantly outperform baseline GMMs

with equal numbers of mixture components. The best large

margin GMM also yields a slightly lower classification error

rate than state-of-the-art results (21.7%) obtained by hidden

conditional random fields [3].

4.2. Phonetic Recognition

The same baseline and large margin GMMs were used to

build phonetic recognizers. The recognizers were first-order

HMMs with one context-independent state per phonetic class.

Baseline or large margin GMMs were used in these HMMs to

compute the log probabilities (or scores) of observed frames.

The weighting of log transition probabilities in all HMMs

was optimized on the development set. Table 1 compares

the phone error rates of these HMMs, obtained by aligning

the results of Viterbi decoding with the ground-truth phonetic

transcriptions [7]. Again, the large margin GMMs lead to

consistently lower error rates, here computed as the sum of

substitution, deletion, and insertion error rates.

5. CONCLUSION

We have shown how to learn GMMs for multiway classifi-

cation based on similar principles as large margin classifica-

tion in SVMs. Classes are represented by ellipsoids whose

location, shape, and size are discriminatively trained to maxi-

mize the margin of correct classification, as measured in terms

of Mahalanobis distances. The required optimization is con-

vex over the model’s parameter space of positive semidefinite

matrices. On problems in phonetic classification and recog-

nition, large margin GMMs led to significant improvement

over baseline GMMs. In ongoing work, we are investigat-

ing the use of context-dependent phone models, which are

known to reduce phone error rates [7, 8]. We are also studying

schemes for integrating the large margin training of GMMs

with sequence models such as HMMs and/or conditional ran-

dom fields [3].
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