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ABSTRACT

This paper presents a novel method for estimating the voicing-
character of speech spectra, demonstrates its employment in noise
robust ASR and proposes a modified calculation of filter-bank en-
ergies. The proposed voicing-character estimation is based on cal-
culation of a similarity between the shape of the signal short-term
magnitude spectra around spectral peaks and spectra of the frame-
analysis window. The similarity is weighted by the signal magnitude
spectra to reflect the filter-bank analysis typically used in feature ex-
traction for speech recognition. The experimental results show less
than 5% false-acceptance and false-rejection errors in detection of
voiced filter-bank channels in speech signal corrupted by white noise
at 10dB local SNR. The recognition results obtained by a missing-
feature based ASR system using features estimated as voiced by
the proposed method are very similar to using oracle voicing-label
obtained by full a-priori knowledge of noise. The employment of
features obtained by a modified calculation of filter-bank energies
shows further improvements in the recognition accuracy.

1. INTRODUCTION

The short-term spectra of speech signal reflects information
about both the vocal-tract filter and source-signal used to produce
the speech. The spectra of voiced speech sounds are characterized by
the presence of a harmonic structure, while unvoiced speech sounds
have a stochastic spectral character. Thus, the estimation of whether
a region of short-term spectra has a harmonic or stochastic charac-
ter, which we refer to as voicing-character information, can provide
important information that could be exploited for the development
of more appropriate speech pattern processing techniques.

The information about the voicing-character of speech spectra
has been mainly exploited in speech coding and speech synthesis re-
search. In [1] the voicing-character is estimated based on the close-
ness of fit between the original and synthetic spectrum at each har-
monic of the estimated fundamental frequency (F0). The authors
in [2] estimate the voicing-character of a spectral peak by using a
procedure based on a comparison of magnitude values at spectral
peaks within the F0 frequency range around the considered peak.
The voicing-character of speech spectra can also be estimated by de-
composing speech signal into harmonic and stochastic components,
by using some decomposition methods (e.g. [3], [4]), and then eval-
uating the ratio of energy of the harmonic and stochastic compo-
nents. The voicing-character estimation was not the primary aim of
the above methods and as such performance evaluation of this was

not provided. Besides, they require estimation of the F0, which may
be difficult to estimate accurately in noisy speech.

In this paper, we present a method for voicing-character esti-
mation of speech spectra that is particularly applicable to speech
pattern processing. In the first step, a similarity, which we refer to
as voicing-distance, between the shape of signal short-term spectra
around each spectral peak and spectra of the frame-analysis window
is calculated. Then, a voicing-distance associated with a filter-bank
channel is computed as an average of voicing-distances weighted
by corresponding spectral magnitude values. This reflects the filter-
bank analysis typically used in feature extraction for speech pattern
processing. The experimental evaluation of the proposed method
is presented in terms of false-rejection and false-acceptance errors
in a voiced/non-voiced character estimation of filter-bank channels.
Then, the performance is evaluated in terms of recognition accuracy
when the voicing-character information is employed in a missing-
feature based ASR system [5]. Finally, we present a modification to
the calculation of filter-bank energies. The results indicate that the
proposed methods can provide a significant improvement in recog-
nition performance, while requiring no information about the noise.

2. VOICING-CHARACTER ESTIMATION OF SPEECH
SPECTRA BASED ON SPECTRAL SHAPE

2.1. Motivation

Based on the source-filter model [6] of speech production, the
source signal used for production of voiced speech is quasi-periodic.
Thus, the short-term Fourier spectrum of voiced speech segment can
be represented as summation of scaled and shifted versions of the
Fourier transform of frame-window function W (ω), i.e.

S(ω) =
H∑

h=0

Ah · W (
ω − (h + 1) · ω0

)
(1)

where ω0 is the fundamental frequency, and Ah = |Ah| · ejφh rep-
resents the complex amplitude (the φh being phase) of the hth har-
monic component (i.e. sine-wave). In Eq. 1, for a given harmonic
frequency, the contributions of side-lobes of W (ω) corresponding to
other harmonics can be neglected due to their amplitude being much
lower than the amplitude of the main-lobe of actual W (ω). Then,
considering that the main-lobes corresponding to adjacent harmonics
are well separated (i.e. the fundamental frequency is not extremely
low), the shape of the magnitude spectra of voiced speech around
each harmonic frequency should follow approximately the shape of
the magnitude spectra of the frame analysis window W (ω).
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2.2. Algorithm description

Below are the steps of the proposed algorithm for voicing-
character estimation of filter-bank channels:

1) Short-term magnitude-spectra calculation: Samples of a signal
frame are weighted by a frame-analysis window function and the
FFT is applied on the vector of signal samples expanded by zeros in
order to provide a smoother short-term spectral magnitude.

2) Voicing-distance calculation: For each peak of the signal short-
term magnitude-spectra, a similarity between the shape of the sig-
nal spectra around the peak and the magnitude-spectra of the frame-
analysis window is computed – this is referred to as voicing-distance
and denoted by vd(k). Specifically, we used the Euclidean distance
between the logarithm spectra, i.e.

vd(kp) =

[
1

2M + 1

M∑
m=−M

(
log10

|S(kp + m)|
|W (m)|

)2
]1/2

(2)

where kp is frequency-index of spectral peak and M determines the
number of components of the spectra at each side around the peak
to be compared. The spectra of the signal, S(k), and frame-window,
W (k), are normalized to have magnitude value equal to 1 at the
peak, prior to their use in Eq.2. Note that spectral peaks are identified
by detection of the changes of the slope of |S(k)| from positive to
negative.

3) Voicing-distance calculation for filter-bank channels: The cal-
culation of the voicing-distance for filter-bank channels is carried
out in such a way that it reflects the calculation of filter-bank en-
ergies typically used to derive features in current speech pattern
processing. Hence, the voicing-distance for filter-bank channels is
defined as the sum of voicing-distances (associated with frequency
components within the region of the filter-bank channel), each being
weighted according to the contribution of the frequency component
to the overall filter-bank energy, i.e.

vdfb(b) =
1

X(b)
·

kb+Kb−1∑
k=kb

vd(k) · Gb(k) · |S(k)|2 (3)

where Gb(k) is the frequency-response of the filter-bank channel
b, and kb and Kb are the lowest frequency-component and num-
ber of components of the frequency response, respectively. The
X(b) =

∑kb+Kb−1
k=kb

Gb(k)|S(k)|2, i.e. the overall filter-bank en-
ergy value. The Eq. 3 requires voicing-distance values for each fre-
quency component. These can be estimated, for instance, by using
a linear interpolation between voicing-distance values correspond-
ing to adjacent peaks, or a piece-wise linear interpolation, in which
vd(k) = vd(kp) for k ∈< kp − M, kp + M > and when these
intervals (corresponding to adjacent kp’s) overlap the minimum of
voicing-distances is taken, otherwise (i.e. there is a gap) linear in-
terpolation is performed between endings of the intervals. Alter-
natively, the computation of vdfb(b) can be based on using only
the voicing-distances corresponding to peaks. In such a case the
summation in Eq. 3 and in calculation of X(b) is only through the
k ∈ {kp, kb ≤ kp ≤ kb + Kb}.

2.2.1. Incorporation of filtering of voicing distances

The voicing-distance obtained from Eq. 2 and Eq. 3 may acci-
dentally become of a low value for a non-voiced region or vice versa,
i.e. resulting a local outlier. This can be improved by employing a

postprocessing (i.e. filtering) of the voicing-distance values. We em-
ployed a 2D median filtering due to its effectiveness in eliminating
outliers and simplicity. The filtering can be performed on interpo-
lated voicing-distance values vd(k) and/or on voicing-distance val-
ues of filter-bank channels vdfb(b). Median filters of size 5× 9 and
3 × 3 were used, respectively.

2.3. Experiments on simulated voiced speech signals

This section discusses and experimentally demonstrates setting
for the parameter M and the use of postprocessing on the calculated
voicing-distances. The parameter settings were evaluated in terms of
an error in voiced/non-voiced character classification of filter-bank
channels, i.e. an overlap between distributions of voicing-distance
values corresponding to voiced and non-voiced filter-bank channels.
Experiments were performed using voiced filter-bank channels cor-
rupted at various local SNRs. The representatives of non-voiced
filter-bank channels were obtained by using white noise. The rep-
resentatives of noise-corrupted voiced filter-bank channels were ob-
tained by adding white noise at various SNRs to simulated voiced
speech signals. The simulated voiced speech signals were synthe-
sized as sum of sine-waves (of equal amplitudes) whose frequencies
were multiples of the F0, which was set to a value from 80Hz to
300Hz in order to reflect a realistic speech.

Throughout this paper, we consider speech signal sampled at
8kHz. The signal is divided into frames of 256 samples (with an
overlap of 80 samples), each frame being obtained by using the
Hamming frame-window. The short-term magnitude spectra, ob-
tained by applying the FFT, is passed to Mel-spaced filter-bank anal-
ysis with 20 channels. Based on experiments presented in [7], the
FFT-size of 1024 points was used in this paper.

An upper-bound for value of the parameter M can be considered
to be the half of the main-lobe bandwidth of analysis-window spec-
tra – this corresponds to the value 8 when FFT-size is 1024 points.
Choosing a higher value for M , i.e. including components more to-
wards the lower-part of the main-lobe (of the expected shape) in the
voicing-distance calculation, may cause the voicing-distance to be
easily affected by little noise in the signal or by an overlap of main-
lobes corresponding to adjacent harmonics when F0 is low. On the
other side, a lower value for M increases the risk of a low voicing-
distance being accidentally obtained for a non-voiced spectral peak.
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Fig. 1. The error in voiced/non-voiced character classification
of filter-bank channels when using simulated voiced signals cor-
rupted by white noise as a function of employed filtering of voicing-
distances (a), and various values of parameter M (b).

The voicing-classification error (averaged over local SNRs from
5dB to 20dB) obtained by simulation experiments are presented in
Figure 1(a) and (b). First, the effect of filtering of voicing-distances
on the error is shown in Figure 1(a) when M is set to 6. It can be
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seen that filtering the vd(k) and vdfb(b) values (in the figure, cor-
responding to stage1 and stage2, respectively) gives similar error,
which is significantly lower than using no filter. The error is further
decreased when filters at both stages are employed. The effect of
setting various values for M on the error rate as a function of voiced
signal being produced by various F0 is shown in Figure 1(b) when
both filters are employed. Setting the M to 6 or 7 gives consider-
ably high voicing classification error when the F0 is below 90Hz,
which is due to the overlap of lower parts of main-lobes of adjacent
harmonics. However, these values of M produce much lower error
than M set to 4 or 5 when F0 is above 90Hz. As the F0 of speech
sounds is in general (and in the speech database used here) rarely be-
low 90Hz, the parameter M was set to 7 for experiments presented
in the following section.

2.4. Modified calculation of the filter-bank-energies

Features used for speech pattern processing are usually derived
from filter-bank energies (FBEs). The FBEs are typically calculated
as

X(b) =
∑

k

Sw(k) where Sw(k) = Gb(k)|S(k)|2 (4)

where the summation is over all k ∈< kb, kb + Kb − 1 > (see
Section 2.2 for description of the notation). For clean speech signal,
when the filter-bank channel contains harmonics, the value of FBE
obtained by using the standard calculation is affected by low spec-
tral values between harmonics. As such, any noise present between
harmonics can easily cause a mismatch between the FBEs of clean
speech and noisy speech. This situation may be improved by calcu-
lating the FBEs based only on few highest values of Sw(k). More-
over, for filter-bank channels whose vdfb(b) is below a voicing-
distance threshold (i.e. estimated as voiced), only the highest values
of Sw(k)’s whose associated vd(k)’s are also below the threshold
are considered. The number of highest values used in the summa-
tion was set from three to six for channels 1 to 5, 6 to 10, 11 to 15,
16 to 20, respectively. Note that each FBE value was normalized by
the number of components used in the summation.

3. EXPERIMENTAL RESULTS

This section presents experimental evaluation of the proposed
voicing-character estimation method using real speech and of the
modified calculation of filter-bank energies. First, the performance
of the voicing-character estimation method is evaluated in terms of
false-acceptance (FA) and false-rejection (FR) errors on a task of a
binary, voiced/non-voiced, character estimation of filter-bank chan-
nels. Then, the effect of FA and FR errors is demonstrated in terms of
recognition accuracy results when the voicing-character information
is employed in an ASR system. Finally, the recognition performance
obtained by using features derived from the modified filter-bank en-
ergies is presented.

As the true information about the voicing-character of filter-
bank channels is not available, it is defined based on a-priori knowl-
edge of clean speech signal and noise; this will be referred to as
‘oracle’ voicing label. Based on experimental results presented in
[7], a filter-bank channel of noisy speech is assigned an oracle la-
bel voiced if its corresponding voicing-distance on clean speech is
below the value 7 and its local-SNR is equal or above 0dB, and non-
voiced otherwise. In experiments, a filter-bank channel is estimated
as voiced when its corresponding voicing-distance value is below a
voicing-threshold.

The experiments were carried out on the isolated part of the
TIDigits database, which contains a total of 2486 test utterances,
corrupted by various types of additive noise at global SNR equal to
20dB, 10dB, and 0dB, respectively.

3.1. Evaluation of voicing-character estimation in terms of
false-acceptance and false-rejection

The results of voicing-character estimation in terms of FA and
FR error rates are, for speech corrupted by white noise at various
local SNRs, depicted on Figure 2. It can be seen that varying the
voicing-threshold can provide the required FA or FR errors. For
instance, the FA and FR errors are both approximately 5% for speech
corrupted at 10dB local SNR.
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Fig. 2. False-acceptance and false-rejection error rates of voicing-
detection as a function of voicing-threshold value (above the figure)
for speech corrupted by white noise at various local-SNRs.

3.2. Evaluation when employed in a missing-feature-based ASR
system

This section presents experiments when the voicing-character
information for filter-bank channels is employed in a missing-
feature-based ASR system. The performance of the proposed
voicing-character estimation method is evaluated by comparing
the recognition accuracies obtained by an ASR system that uses
the information about voicing-character estimated by the proposed
method and oracle voicing-information. This reflects the effect of
FA and FR errors presented in the previous section on the recogni-
tion accuracy of an ASR system.

The experiments were carried out for speaker-independent digit
recognition. The features used for speech recognition were obtained
by filtering the logarithm filter-bank energies over the frequency di-
mension by the filter H(z)=z-z−1 [8], resulting a feature vector con-
sisting of 18 elements (denoted as FF-feature vector). In order to
include dynamic spectral information, the first-order delta parame-
ters were added. A continuous-observation left-to-right HMM with
16 states (no skip allowed) was used to model each digit. For each
state, three Gaussian mixtures with diagonal covariance matrices
were used. The training of HMMs was performed on clean utter-
ances from the training set by using all the features. In recognition,
marginalization-based missing-feature ASR system was employed.
A static FF-feature was used only if both filter-bank channels (used
for its calculation, see above) were labelled as voiced, otherwise it
was marginalized. The dynamic features were used all. The voicing-
labels for filter-bank channels were obtained by setting the voicing-
threshold to 8.5; negligible performance differences were observed
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when the threshold value was within the range from 8 to 9. For com-
parison, the experiments were also performed when all features were
used (i.e. standard method) – this corresponds to a situation when all
features would be estimated as voiced.

The experimental results are presented in Table 1. It can be
seen that employment of the voicing-information obtained by the
proposed method can significantly improve the recognition perfor-
mance over the standard method. Indeed, the recognition perfor-
mance obtained when using the voicing-labels estimated by the pro-
posed method are very similar to using the voicing-labels obtained
based on a-priori knowledge of noise. Slightly larger recognition ac-
curacy difference in the case of Pub noise is due to speech-like con-
tent of this noise, i.e. some voiced features actually correspond to
background noise. This can be improved by combining the features
detected as voiced by using the feature-combination model presented
in [9].

Table 1. Recognition accuracy results obtained by an ASR system
that uses voicing-labels estimated by the proposed method and by
full a-priori knowledge about noise (oracle). The performance when
using all features is included for comparison.

SNR Noise All Features Voiced Features
[dB] type Oracle Estimated

20 White 94.0 95.8 95.9
Factory 96.5 96.9 97.0
F16 92.5 96.7 96.6
Pub 95.3 96.6 95.8

10 White 77.0 87.4 87.4
Factory 87.8 90.1 90.2
F16 68.6 89.5 88.9
Pub 82.4 89.6 86.1

0 White 35.7 52.7 52.9
Factory 50.6 55.1 53.8
F16 21.6 55.4 51.9
Pub 50.6 63.8 56.1

3.3. Experiments with features derived from the modified FBEs
calculation

This section presents experimental results when using the same
estimated voicing-labels as in the previous section, however, the fea-
tures derived from the modified calculation of filter-bank energies.
The recognition results for speech corrupted at SNR=0dB are pre-
sented in Figure 3. It can be seen that using features based on mod-
ified calculation of FBEs provides improvement in all noisy condi-
tions, except for the Pub noise. Note that the results for speech cor-
rupted at higher SNRs are not presented as there was only a negligi-
ble difference (less than 0.5%) in recognition performance between
using standard and modified FBEs calculation. This may be due to
lower noise power – as such its presence between harmonics will
have only little effect on the filter-bank energy values.

4. CONCLUSION

In this paper, we presented a simple yet effective method for
the estimation of the voicing-character of speech spectra based on
the comparison of the spectral shape around each peak of short-term
spectra to the spectra of the frame-analysis window. This method
does not require information about the fundamental frequency. The
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Fig. 3. Recognition accuracy results employing the estimated
voicing-labels for speech corrupted at 0dB when using features de-
rived from the standard and modified calculation of FBEs.

proposed method was evaluated on voiced/non-voiced character es-
timation of filter-bank channels. Experiments were performed for
speech corrupted by various noises at various SNRs. The results
of detection of voiced filter-bank channels for speech corrupted by
white noise at 10dB local SNR show less than 5% FA and FR errors.
The voicing-character information was incorporated in a missing-
feature based ASR system. The experimental results showed very
similar performance obtained by using the features estimated as
voiced by the proposed method and by full a-priori knowledge of
the noise. Finally, a modification to the calculation of filter-bank
energies was presented and this showed further error reduction.
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