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ABSTRACT 

This paper introduces the Greenwood Function Cepstral 
Coefficient (GFCC) and Generalized Perceptual Linear 
Prediction (GPLP) feature extraction models for the analysis 
of animal vocalizations across arbitrary species. These 
features are generalizations of the well-known Mel-
Frequency Cepstral Coefficient (MFCC) and Perceptual 
Linear Prediction (PLP) approaches, tailored to take optimal 
advantage of available knowledge of each species’ auditory 
frequency range and/or audiogram data. Illustrative results 
are presented comparing use of the GFCC and GPLP 
features versus MFCC features over the same frequency 
ranges.  

1. INTRODUCTION 

Mel-Frequency Cepstral Coefficients (MFCCs) [1] and 
Perceptual Linear Predication (PLP) coefficients [2] are 
well-established feature representations for human speech 
analysis and recognition tasks. Each of them benefit from 
inclusion of frequency-domain perceptual models of the 
human auditory system. The MFCC approach does this by 
warping the linear frequency axis to match the Mel-scale 
cochlear frequency map, while the PLP method adds to this 
the use of critical band filters, equal-loudness curve 
amplitude transformation, and cube-root power to intensity 
transformation. Since these speech processing feature 
extraction models have been shown to be relatively robust to 
noise and appropriate for various types of classification 
tasks including speech recognition, speaker identification, 
and word spotting, they would likely be good choices for 
many bioacoustic signal analysis tasks if they could be 
generalized to easily adjust according to perceptual models 
of an arbitrary species. 

The two main species-specific components of these 
feature extraction models are frequency warping and the 
equal loudness curve. To generalize the frequency warping 

component across arbitrary species, we build on the work of 
Greenwood [3], who showed that many land and aquatic 
mammals have a logarithmic cochlear-frequency map, and 
developed an equation fitting this map. The equal loudness 
curve component is taken directly from species-specific 
audiogram measurements, which are available for a wide 
variety of species.  

The second and third sections of this paper will discuss 
the details of the GFCC and GPLP models, respectively. 
Section 4 will provide experimental validation through call- 
and song-type classification and speaker identification 
experiments on African Elephant and Ortolan Bunting 
vocalizations, with discussion and conclusions in Section 5. 

2. THE GREENWOOD FUNCTION CEPSTRAL 
COEFFICIENT (GFCC) MODEL 

Greenwood [3] found that many mammals perceived 
frequency on a logarithmic scale along the cochlea. He 
modeled this relationship with an equation of the form 

( )kA ax
−10 , (1) 

where a, A, and k are species-specific constants and x is the 
cochlea position.  This equation can be used to define a 
frequency warping through the following equations for real 
frequency, f, and perceived frequency, fp: 

( ) ( ) ( )kAfafFp += 10log1  (2) 

( ) ( )kAfF paf
pp −=

− 101 . (3) 

The constants a, A, and k can be found directly by fitting the 
equation to frequency–cochlear position data, if available. 
For many species, however, this information has never been 
measured.  Greenwood [3] contains a detailed discussion on 
the effects of varying each of the constants.   

LePage [4] showed that k can be approximated by a 
value of 0.88 for experimental data acquired on a number of 
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mammalian species. This value was derived by jointly 
maximizing high-frequency resolution and the linearity of 
the logarithmic map.  Assuming this value for k, the other 
two constants can be solved for given the approximate 
hearing range (fmin – fmax) of the species under study.  By 
setting Fp(fmin) = 0 and Fp (fmax) = 1, the following equations 
for a and A are derived 
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Thus, using the species specific values for fmin and fmax

and an assumed value of k=0.88, a frequency warping 
function can be constructed. This warping can be used to 
compute cepstral coefficients in the same way as MFCCs, 
typically through filterbank windows and a Discrete Cosine 
Tranform (DCT). Figure 1 shows GFCC filter positioning 
for African Elephant [5, 6] and Passeriformes (songbird) [7] 
species compared to the Mel-Frequency scale. 

The Mel-Frequency scale employed by the MFCC 
model is actually a specific implementation of the 
Greenwood equation. The Bark frequency scale employed 
by the PLP model does not fit this same form but can be 

closely approximated by the Mel-scale.  Therefore, the 
above method is an appropriate generalization for both the 
MFCC and GPLP frequency warping models. 

3. GENERALIZED PERCEPTUAL LINEAR 
PREDICTION (GPLP) COEFFICIENTS 

In addition to frequency warping, the PLP model uses 
an equal loudness curve to model the range of human 
hearing. Audiograms, widely available for many species, are 
empirical hearing range curves that can be used directly to 
estimate equal loudness curves. By substituting a species-
specific frequency warping and equal loudness curve, a 
generalized perceptual linear prediction (gPLP) model can 
be constructed that takes the perceptual abilities of the 
species into account during the feature extraction process.  
The gPLP model is presented in depth in [8, 9]. 

To create an equal loudness curve for an arbitrary 
species [10], the audiogram data, G, is first inverted and 
compared to the hearing threshold, T, using  

[ ] [ ]( )TfGfE −−= , (6) 

where T is usually set to 60dB for land animals and 120dB 
for aquatic animals [11]. A continuous approximation of the 
equal loudness curve, Ê(log (f)), is constructed with a 4th-
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Figure 1: Filter Bank Comparison between Mel-Scale and Greenwood Scale for Passeriformes and Asian Elephants 
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Figure 2: Passeriformes and Asian Elephant Equal Loudness Curves (Solid Line) Compared to Human (Dotted Line) 
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order polynomial fit using the logarithm of frequency. The 
equal loudness curve is further constrained to have a 
minimum of zero to prevent negative equal loudness 
weights.  The Audiograms and equal loudness curves for 
Asian Elephants [5, 6] and Passeriformes [12] are shown in 
Figure 2, with a human equal loudness curve suggested in 
[2] superimposed. 

Using the previously described frequency-warping 
method and the above construction for equal loudness curve, 
GPLP coefficients can be obtained using standard methods 
[2]. Appropriate features for analysis are typically obtained 
by computing cepstral coefficients directly from the GPLP 
linear prediction coefficients. 

4. ILLUSTRATIVE EXPERIMENTS 

4.1.1. Ortolan Bunting 
Norwegian Ortolan Bunting vocalization data was 

collected from County Hedmark, Norway in May of 2001 
and 2002 [13]. Although the birds covered an area of 
approximately 500 km2 on twenty-five sites, males were 
only recorded on eleven of those sites. A team of one to 
three research members who recognized and labeled the 
individual male buntings visited the sites. Overall, the entire 
sample population in 2001 and 2002 contains 150 males, 
115 of which are color-ringed for individual identification.  
Because there are no known acoustic differences between 
the ringed and non-ringed males, all data was grouped 
together for these experiments. 

Ortolan Buntings communicate with each other through 
fundamental acoustical units called syllables, analogous to 
phonetic units in human speech.  To produce a song, the 
syllables are joined in sequence, creating multiple song-
types (e.g., ab, cb, huf) and many specific song-type variants 
(e.g., aaaabb, ccccbbb, hhhuff).  In this data set, there are a 
63 song-types with 234 distinct variants [13]. 

Song-type classification and speaker identification 
experiments [14] were performed on the Ortolan Bunting 
dataset. MFCCs, GFCCs, and GPLP-derived CCs. Song-
type classification experiments used a standard 39 element 
feature vector consisting of the cepstral coefficients and log 
energy along with delta and delta-delta coefficients. Speaker 
identification experiments used only the original 12 element 
cepstral coefficient vectors. Frequency warping for this 
species was done with fmin = 400 Hz and fmax = 7200 Hz, 
k=0.88, and 26 filterbanks spaced across that range. Equal 
loudness curves were computed from the audiograms of the 
Snow Bunting, since Ortolan Bunting measurements are not 
available. The vocalizations were Hamming windowed with 
frame and step sizes of 5 ms and 2.5 ms to obtain an 
appropriate number of pitch peaks in each frame. 
Classification models for both experiments were 15-state 
left-to-right HMMs with each state containing a single 
diagonal-covariance Gaussian. The Baum-Welch 
Expectation Maximization (EM) algorithm was used to 

estimate the model parameters, and the Viterbi algorithm 
was employed for classification. Experiments were run using 
leave-one-out cross-validation across the data set. HTK 
software version 3.2.1 from Cambridge University was used 
to implement the HMMs [15].  

Speaker independent song-type classification 
experiments were performed across the 5 most common 
song types using 50 exemplars of each song-type, each 
containing multiple song-type variants. Results are shown in 
Table 1 below. It can be seen that the GPLP and GFCC 

slightly out-performed the MFCC feature set, by 0.4% and 
0.8%, respectively. 

Song-type dependent speaker identification experiments 
were performed using 25 exemplars of the most frequent 
song-type ab for each of the 6 vocalizing buntings. Table 2 
shows the results for each of the feature sets. Results again 

indicate that the GFCC and GPLP features slightly 
outperformed the MFCCs, each by 1.4%. 

4.1.2. Loxodonta Africana 
Animal behavior researchers at Disney’s Animal 

Kingdom™ in Orlando, FL collected the African Elephant 
(Loxodonta Africana) data used in this experiment [16]. 
Each elephant involved in the data collection project was 
fitted with a custom designed collar. The collars contained a 
microphone and an RF radio that broadcast audio to the 
elephant barn, where it was recorded on DAT tapes. The 
audio was passed through an anti-aliasing filter and stored 
on computers at a sampling rate of 7518 Hz.  

There were 7 elephants involved in the project: one 
male and 6 females. Based on social dynamics and breeding 
requirements, the elephants were released into one of three 
naturalistic yards each day. The two most common 
configurations in the main yard were all six females together 
and one male with four females. Along with the audio 
recordings, time synchronized video was also recorded. In 
this way, the researchers were able to label each vocalization 
with behavior information.  

Speaker identification experiments were performed on 
the Loxodonta Africana dataset. As with the Ortolan Bunting 
experiments, the recognition accuracies were compared 
across MFCC, GFCC, and GPLP features. Frequency 
warping for the African Elephants was done with fmin = 10 
Hz, fmax = 10000 Hz, and k=0.88, with 30 filterbanks spaced 
across the range of 10 – 150 Hz to emphasize the infrasonic 

MFCC GFCC GPLP 
97.6% 98.4% 98.0% 

Table 1: Ortolan Song-Type Classification Accuracies 

MFCC GFCC GPLP 
93.3% 94.7% 94.7% 

Table 2: Ortolan Speaker Identification Accuracies 
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vocal range of the vocalizations. Equal loudness curves were 
computed from the audiograms of the Asian Elephant, since 
African Elephant measurements are not available. The 
vocalizations were Hamming windowed with frame and step 
sizes of 300 ms and 100 ms to obtain an appropriate number 
of pitch peaks in each frame. Classification models were 5 
state left-to-right HMMs with a single diagonal-covariance 
Gaussian per state. Results were obtained through leave-one-
out cross-validation. 

Call-type dependent speaker identification experiments 
were performed using the entire Loxodonta Africana dataset. 
There were a total of six elephants (Bala, Fiki, Mackie, 

Moyo, Robin, and Thandi) with 20, 30, 14, 17, 34, and 28 
rumble exemplars per elephant. Table 3 shows the results for 
each of the feature extraction models. 

Results show that the GFCC and GPLP each outperform 
the MFCC features by roughly 5%.  

5. CONCLUSIONS 

New feature extraction models have been introduced for 
application to analysis and classification tasks of animal 
vocalizations. The GFCC, a frequency-warped cepstral 
coefficient using the Greenwood Function, and the GPLP, a 
PLP-based model utilizing both Greenwood Function 
warping and audiogram data, are applicable to a wide 
variety of species and bioacoustic applications. Results have 
been shown for two different species, the African Elephant 
and the Ortolan Bunting, with accuracies indicating 
performance improvement over MFCCs when used with 
identical frequency ranges. 
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MFCC GFCC GPLP 
81.12% 86.01% 86.01% 

Table 3: Elephant Speaker Identification Accuracies 
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