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ABSTRACT

A well-known problem with linear prediction is that its estimate of

the spectral envelope often has sharp peaks for high-pitch speak-

ers. These peaks are anomalies resulting from contamination of the

spectral envelope by the spectral fine structure. We investigate the

method of regularized linear prediction to find a better estimate of the

spectral envelope and compare the method to the commonly used ap-

proach of bandwidth expansion. We present simulations over voiced

frames of female speakers from the TIMIT database, where the en-

velope modeling accuracy is measured using a log spectral distortion

measure. We also investigate the coding properties of the methods.

The results indicate that the new regularized LP method is superior

to bandwidth expansion, with an insignificant increase in computa-

tional complexity.

1. INTRODUCTION

Linear prediction (LP) is commonly used to estimate the parameters

of an autoregressive (AR) model describing the spectral envelope.

The LP estimation procedure is suited for estimating the spectral

envelope since it emphasizes local spectral peaks but is insensitive

to global spectral variations [1]. However, it is not clear that the

criterion that is minimized in the LP estimation method is optimal for

speech processing. In particular, a commonly observed problem is

the contamination of the spectral envelope by spectral fine-structure

[2].

Over the years, numerous attempts have been made to improve

all-pole spectral envelope estimation for speech processing applica-

tions. Examples of such attempts include the use of alternate spectral

estimation techniques [2], methods to improve the spectral fit for pe-

riodic excitation signals, e.g., [3, 4], methods that account for the

amplitude of the excitation, e.g., [5], and methods that perform a

frequency warp on the AR model, e.g., [6]. However, simple meth-

ods to prevent sharp spectral peaks, such as the lag window method

[7] and particularly bandwidth expansion [8] have had the most sig-

nificant impact on speech processing.

In bandwidth expansion, the radii of the poles of the AR model

are scaled by a factor γ < 1, resulting in a bandwidth expansion

∆B ≈ − ln(γ)

πT
, (1)

where T is the sampling interval. The method forms an ad-hoc post-

processing stage after the LP estimation procedure. While it works

well, it cannot be claimed to be optimal in any sense.

Using a more formal approach, Cappe and Moulines [9] used a

modified criterion to obtain a broadening of the formant bandwidth
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for a cepstral representation. In later work [10], it was shown that

such a regularization approach can also be used to reduce the peaky

behavior obtained by the LP estimation approach.

The main disadvantage of the method of [10] was that it was

computationally expensive, namely the computation of the penalty

term requires an iterative procedure. In [11], Murthi and Kleijn elim-

inated this problem by modifying the penalty term. Following the

work of [11], we minimize a composite cost function of the predic-

tion error variance and a penalty measure, constructed to penalize

non-smooth behavior of the spectral envelope. By varying the con-

tribution of the penalty term, different degrees of regularization are

attained.

The ability of a particular LP-based method to estimate the spec-

tral envelope is particularly well illustrated for high AR model or-

der. The usage of conventional LP estimation for a high order of the

AR model results in a modeling of the fine structure of the speech

frame. That is the harmonics of the power spectrum are clearly vis-

ible [2, 12]. Conventional LP estimation avoids modeling the spec-

tral fine-structure by having a low prediction order. In this paper,

we show that regularized linear prediction solves the problem of

spectral-envelope estimation at a fundamental level, independently

of prediction order. The regularization technique gives an extra de-

gree of freedom in the spectral modeling, compared to bandwidth

expanded LP. The present paper shows that the formal regulariza-

tion method can provide a better estimate of the spectral envelope

than bandwidth expansion at an insignificant additional computa-

tional cost.

2. REGULARIZED LINEAR PREDICTION

For an AR model 1/A(z) of order M with A(z) = a0 + a1z
−1 +

. . . + aMz−M , the spectral envelope is defined by

S(ω, a) =
1

|A(ejω)|2 , (2)

in which a = [a1, a2, . . . , aM ]. The concept of regularized LP [10,

11] is to minimize the cost function

D(S(ω, a), S(ω)) + λR(S(ω, a)), (3)

where D is a cost function between the spectral envelope of the

model S(ω, a) and the original speech power spectrum S(ω).

R(S(ω, a)) is the penalty measure, which increases for rapid

changes in the contour of the spectral envelope. The factor λ con-

trols the trade-off between the fit of the speech spectrum and the

smoothness measure.

In [11], the authors show that the penalty measure

R(S(ω, a)) =
1

2π

� π

−π � d

dω
log |S(ω, a)|� 2

dω (4)
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can be approximated by

R̂(S(ω, a)) = aT DFDa, (5)

where D is a diagonal matrix in which each diagonal element con-

sists of the row number, and F is a Toeplitz autocovariance matrix

for a suitably windowed autocorrelation sequence of a speech frame.

The similarity between (5) and the cost function of conventional LP

D(S(ω, a), S(ω)) = aT Ra + 2aT r + rT r, (6)

leads to a composite cost function that has a simple form and yields

the compact solution

aopt = −(R + λDFD)−1r, (7)

where R is the autocovariance matrix of the speech frame and r is

the vector of speech autocovariance values [r(1), r(2), . . . , r(M)]T .

The matrix (R + λDFD) is Hermitian and positive definite, so effi-

cient algorithms for solving (7) exist, e.g., Cholesky decomposition.

The optimal AR filter coefficients can thus be calculated with an in-

significant increase in computational complexity over conventional

LP.

3. DISTORTION MEASURE

An often used distortion criterion is the log spectral distortion at the

harmonics between the power spectrum of the speech frame and the

modeled spectral envelope (e.g., [3], [13]). In our case, this measure

is less suitable because it does not indicate whether the AR model of

the envelope is contaminated by the spectral fine structure (the har-

monics). Instead, we evaluate the envelope modeling performance as

the log spectral distortion between the envelope obtained by linear

interpolation between the harmonic peaks of the logarithmic peri-

odogram, and the spectral envelopes of the AR models:

LSD = � 1

π

� π

0 � 10 log10 Slin(ω) − 10 log10 S(ω, a) � 2
dω.

(8)

Slin(ω) is the interpolated periodogram, which can be seen as a

coarse estimate of the spectral envelope. If we ignore the spectral

tilt of the excitation signal, this envelope can be seen as a reasonable

vocal tract transfer function.

Figure 1 illustrates the approach. The periodogram of a voiced

frame is shown, together with the harmonics and the linear inter-

polation between them. Also shown are the spectral envelopes of

bandwidth expanded LP with γ = 0.985, and regularized LP with

λ = 0.0050. The values of the constants are chosen to minimize

the criterion in (8). The bandwidth expanded LP envelope follows

several of the harmonic peaks, whereas the regularized LP gives a

smoother, more plausible, envelope. The poles of the bandwidth ex-

pansion approach are restricted to having the same angles as those

of conventional LP, and therefore the bandwidth expanded LP enve-

lope has a shape similar to that of the conventional LP envelope (not

shown in the figure).

4. FINDING THE OPTIMAL λ

Methods for regularized linear prediction can be divided into two

classes: those using a constant λ and those using an adaptive λ. In

the first class, λ is kept constant through all frames. In the second

class, λ is allowed to vary in each frame. In the simulations we have

considered candidates from both classes, and they are listed in ta-

ble 1, along with the abbreviations used in the upcoming simulation

plots.
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Fig. 1. Periodogram of a frame of voiced female speech (solid), us-

ing a 20 ms Hamming window. The detected harmonics are marked

(·), and the linear interpolation Slin(ω) is dashed. The bandwidth

expanded LP envelope for γ = 0.985 is shown dotted, and the reg-

ularized LP envelope for λ = 0.0050 is shown as solid. The AR

model order is 16.

4.1. Experimental setup

Voiced frames were extracted from female speakers of the TIMIT

database. We used 9,483 frames as training data, and another 4,001

frames as validation data. The test and validation data sets were from

different speakers. Only female speech was considered due to the

fact that the pitch frequency generally is higher for female speak-

ers, and it is at high pitch frequencies that the problem of narrow

bandwidth envelopes occurs in its most significance. The speech

was sampled at 8 kHz. Each frame consisted of 20 ms of speech

samples, windowed with a Hamming window of the same length be-

fore processing with the different linear prediction methods. The AR

model order was chosen to be 16, to clearly capture the harmonic fit

problem that LP suffers from. For a 10’th order AR model the results

have the same trend, although less pronounced.

4.2. Training

For each frame of the training database, we calculated the AR model

coefficients using conventional LP, along with regularized LP for a

range of different λ values, as well as the coefficients of the band-

width expansion approach for a range of different γ values. We esti-

mated the pitch of the current frame and found the pitch harmonics

in the power spectrum of the speech samples, and calculated the lin-

ear interpolation of the power spectrum, Slin(ω). The log spectral

distortions were calculated between the interpolated power spectrum

Slin(ω) and the conventional LP, regularized LP and bandwidth ex-

panded LP, respectively, using (8). In the training procedure, we

could then choose the λ and γ according to the criteria in table

1. Ropt and BEopt are included to determine the optimal perfor-

mance of the methods of regularized LP and bandwidth expansion,

respectively, and cannot be used in practical situations.
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LP Conventional Linear Prediction is used

as a reference method.

RC Regularized LP with the constant λ that

yields the lowest distortion.

BEC Bandwidth expansion with the constant

γ that yields the lowest distortion.C
o
n
st

an
t
λ

,
γ

MOD Regularized LP with λ chosen as a

function of the pitch frequency.

Ropt Regularized LP with λ changing on a

frame-by-frame basis, picked as the λ
that gives the smallest distortion possi-

ble for each particular frame.

A
d
ap

ti
v
e

λ
,
γ

BEopt Bandwidth expansion with γ changing

on a frame-by-frame basis, picked as

the γ that gives the smallest distortion

possible for each particular frame.

Table 1. The different approaches of selecting λ and γ, and their

abbreviations.
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Fig. 2. The mean log spectral distortion over the training database

of 9,483 frames for conventional LP (dashed), bandwidth expansion

(dotted) and regularized LP (solid). The best constant values of λ
and γ are depicted in the figure.

4.2.1. Constant λ

RC and BEC were compared to conventional LP in figure 2, for

a set of different values of λ ∈ [0, 0.02] and γ ∈ [0.95, 1]. For

the best choice in λ (λRC = 0.0034) the regularized LP performed

better, with an average improvement (over all the frames) of 0.25

dB over conventional LP, whereas bandwidth expansion performed

0.12 dB better than conventional LP. The best constant γ was in this

case 0.9825, which corresponds to 45 Hz of bandwidth expansion,

as given by (1).

4.2.2. Adaptive λ

The problems with linear prediction envelopes exhibiting peaks that

are too sharp is mainly noticeable for female speakers, due to the

high pitch frequency. Our simulations confirm that at a low pitch

frequency, the optimal λ is often zero, reducing the method to con-

ventional LP, whereas a larger λ is optimal when the pitch fre-

quency is higher. We therefore propose a simple model (MOD),

λ = max(0, a · pitch + b), where the constants a and b are de-

termined from the training data set with least squares fitting. This

method could be integrated into a system, if a pitch estimator is

present. As can be seen in figure 3, the model is slightly better than
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Improvement over conventional LP

Fig. 3. Improvement of log spectral distortion over conventional LP

for the investigated methods, over a database of 9,483 female voiced

frames of speech. The results of the gray bars are evaluated for the

same data as was used in training. The black bars show the result

from the validation data set, with 4,001 frames.

using a constant λ (RC). It is 0.29 dB better than conventional LP.

Ropt is the best performance we can get for the regularized LP

with this distortion measure, since the optimal λ is chosen for each

frame. It corresponds to a log spectral distortion that is 0.33 dB

lower than conventional LP.

BEopt is the corresponding method for bandwidth expansion.

The best γ (in the log spectral distortion sense) is chosen for each

frame. The result is 0.19 dB better than conventional LP. The results

from training and validation are summarized in figure 3.

4.3. Validation
In the validation session, the first four entries of table 1 are inves-

tigated. The best choice of constant λ, constant γ and the model

parameters [a, b] are carried over from the training database:

λRC = 0.0034, γBEC = 0.9825,

a = 8.9 × 10−5, b = −1.4 × 10−2. (9)

The results for constant λ (RC) and γ (BEC) are similar to

those of previous section, and can be found in figure 3. The model

of λ (MOD) receives a slightly higher score than the regulariza-

tion with constant λ (RC), which is consistent with the previous re-

sult. Figure 4 confirms that the regularization and bandwidth expan-

sion methods are important only at high pitch frequencies (at around

175Hz and above).

4.4. Other approaches of selecting λ

The regularization scheme leads to an increase in the prediction error

variance. In regularization techniques, a way to display information

about the regularization solution is to plot the solution (or in our case,

the penalty measure) versus the norm of the residual vector. Meth-

ods for this kind of analysis, e.g., by means of the L-curve [14] to

find a ”sweet spot” between the increase in prediction error variance

and the decrease of the penalty measure in (5) were investigated. We

have also investigated if there is an optimal relative increase of the

prediction error variance that leads to the best choice in λ. The re-

sults of these tests show that the methods are not satisfactory, which

is why they are omitted from the presented results.

5. CODING COMPLEXITY

Let us consider the case where regularized linear prediction is to be

used in a speech coder. We study the case of high rate entropy cod-

ing of the line spectral frequencies (LSFs). We use a 10’th order
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Fig. 4. The improvement in log spectral distortion over conventional

LP at different pitch frequencies, for the investigated methods. The

lower plot shows the distribution of the frames over pitch frequency.

The results are from the validation data base.

LP BEC RC MOD

Entropy 39.3 37.5 36.5 35.9

Improvement 1.8 2.8 3.4

Table 2. The entropy for the quantization indices for the different

LP methods. All numbers are in bits. The LSD criterion is that of

equation (8).

AR model, and the AR coefficients are converted to LSFs to ob-

tain a realistic coding scheme. The first LSF coefficient is coded

as is, whereas the remaining LSFs are coded as differences between

two adjacent LSFs, L = [lsf1, lsf2 − lsf1, lsf3 − lsf2, . . . , lsfM −
lsfM−1]

T .

In high-rate entropy constrained quantization, the optimal quan-

tizer is the uniform quantizer. The distortion is known, and the same,

for all the different approaches, here chosen to be 1.00 dB for trans-

parency. Therefore, the components of L are quantized using uni-

form quantizers. The entropy of the quantizer indices is calculated

for each component of L over all the frames of the validation data-

base. Conventional LP, bandwidth expansion, and regularized LP

are all tested using this approach, and the result is shown in table 2.

The conventional LP (LP) performs worst, followed by band-

width expansion (BEC). Regularized LP with constant λ (RC)

performs better and the adaptive λ (MOD) scheme provides the

best results. The improvement is approximately 2 bits for the regu-

larized LP methods, as can be seen from the middle line of table 2.

Since regularized LP increases the prediction error, it remains to be

shown that the composite modeling of coefficients and residual also

improves compared to conventional linear prediction.

6. CONCLUSIONS

Regularized linear prediction yields a smoother and physically more

plausible spectral envelope than linear prediction with bandwidth ex-

pansion. Whereas bandwidth expansion simply modifies an existing

LP estimate of the spectral envelope that may be contaminated by

spectral fine structure, regularized LP optimizes the spectral fit with

a penalty on nonsmooth behavior. This provides the regularization

procedure with an advantage over bandwidth expanded LP at a fun-

damental level. As a result, regularized LP can provide an accurate

estimate of the spectral with a high model order.

Our simulations show that the regularized linear prediction mod-

els an approximation to the vocal tract transfer function more accu-

rately than bandwidth expanded linear prediction, even for a constant

penalty factor λ. Regularized prediction has a negligible additional

computational cost, and results in a lower coding rate for the spectral

description. Thus, regularized linear prediction forms an attractive

method for estimation of the AR parameters in speech processing

systems.
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