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ABSTRACT

Recently, there has been much interest in geometrically moti-

vated dimensionality reduction algorithms. These algorithms

exploit low-dimensional manifold structure in certain natu-

ral datasets to reduce dimensionality while preserving cate-

gorical content. This paper has two goals: (i) to motivate

the existence of a low-dimensional curved manifold structure

to voiced speech sounds, and (ii) to present a new intrinsic

(manifold-based) spectrogram technique founded on the ex-

istence this manifold structure. We find that the intrinsic rep-

resentation allows phonetic distinction in fewer dimensions

than required by a traditional spectrogram.

1. INTRODUCTION

Let M denote the set of possible vocal tract transfer func-

tions that correspond to the articulatory configurations used

in speech production. Since each g(ω) ∈ M is a function

in L2, it follows that M ⊂ L2 is a low-dimensional sub-

manifold if the space of articulatory configurations is also

low-dimensional (i.e., the articulators have few degrees of

freedom). A speech signal x(t) has a corresponding trajec-

tory in the space of articulatory configurations, and there-

fore also has a corresponding trajectory p(t) on the manifold

M. A traditional spectrogram is obtained by projection maps

fω : M → R applied to the trajectory, namely fω[p(t)].
Since M is a submanifold of L2, it inherits a Rieman-

nian structure from L2 and is, as we will see, non-Euclidean.

Therefore, a natural intrinsic basis exists on this manifold

(from harmonic analysis), giving rise to a corresponding set

of projection maps fj : M → R. These {fj} are the eigen-

functions of the Laplacian operator on the manifold. Thus,

the speech trajectory can be represented under this projec-

tion, fj [p(t)], giving rise to an alternative intrinsic spectro-

gram that is faithful to the geometry of speech sounds.

Our development of intrinsic Fourier analysis for speech

sounds has two parts. First, we must motivate the manifold

assumption for speech if the distinct intrinsic coordinate sys-

tem is to exist at all. Second, in the absence of an analytical

coordinate chart for the manifold, we must provide an algo-

rithmic means for approximating the set of projection maps

for intrinsic coordinate systems.

The articulatory parameterizations of phoneme produc-

tion developed by Fant and others [1, 2] strongly indicate the

existence of a low-dimensional manifold structure to certain

classes of speech. To formally motivate this, we present a

brief derivation of sounds generated by series of concatenated

tubes. This system serves as a simple model for the vocal tract

proven useful in the tradition of acoustic modelling of voiced

phoneme production. We formally demonstrate that the set

of transfer functions for such finitely parameterized acous-

tic tube filters forms a low-dimensional curved manifold that

spans a higher dimensional space.

We continue by presenting a new method for approximat-

ing the intrinsic coordinate system derived from the graph

Laplacian spectral clustering methods of [3]. Our method

provides the means to cast a traditional extrinsic spectrogram

onto the intrinsic basis of the manifold. We conclude with

a preliminary example of using this method and its phonetic

interpretation.

2. THE PHYSICS OF ACOUSTIC TUBES

The acoustic analysis of the vocal tract resonator can be re-

duced to the tractable problem of concatenated uniform acous-

tic tubes with the introduction of several approximations, val-

id for human speech up to 5 kHz [2]: (i) rigid vocal tract walls,

(ii) small transverse vocal tract dimensions, (iii) small pres-

sure, density, and velocity perturbations, and (iv) transient

perturbations. Under these approximations the one-dimen-

sional equations of compressible fluid flow continuity and

conservation of momentum reduce to the acoustic equations

for the uniform tube filter,

∂p

∂t
=

γp0

A

∂U

∂x
and

∂p

∂x
=

ρ0

A

∂U

∂t
, (1)

where p0 and ρ0 are the equilibrium air pressure and density,

p and U are the wave pressure and volume velocity deviations

from equilibrium, γ = 5/3, and A is the cross-sectional area

of the tube. The independent variable x is the position along

the axis of the tube.

The first boundary condition specifies the volume velocity

input into the system at x = 0. The second condition exploits
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the fact that a sound wave faces the acoustic impedance of the

surrounding environment at the open end of the tube (x = L).

These constraints are formulated by the relations

Û(0, ω) = ŝ(ω) and Û(L, ω) =
p̂(L, ω)

Zr(ω)
, (2)

where Û and p̂ are the Fourier transforms of U and p, ŝ is the

Fourier transform of the volume velocity source, and ω is the

angular frequency. Here,

Zr(ω) =
ρ0ck

2Ks(ω)

4π
+ i

4ckρa

5A
,

is the approximate form of the radiation impedance given by

Stevens [2] (valid up to 6 kHz), based on a model of a circular

piston of air (the mouth) on the surface of a sphere with radius

9 cm (the head). Here c is the speed of sound, A = πa2 is the

area of the piston, and k = ω/c is the wave number. The term

Ks is a real-valued frequency-dependent factor (see [2] or [4]

for details).

Now consider generalized the filter composed of a se-

ries of N tubes with lengths {Li} and cross-sectional areas

{Ai}. Relying on continuity of pressure and volume veloc-

ity at inter-tube boundaries, the solution for N concatenated

tubes is equivalent to determining N single tube solutions.

Given this filter geometry, the output pressure spectrum that

satisfies Equation 1 with the boundary conditions of Equa-

tion 2 takes the form p̂(ω) = ŝ(ω)g(ω, {Li}, {Ai}), where

g(ω, {Li}, {Ai}) =
Zr(ω)

M22 − Zr(ω)M12
. (3)

is the transfer function for the entire N -tube filter. Here, M =∏N
i=1 Ci with

Ci =

[
cos kLi i Ai

ρ0c
sin kLi

iρ0c
Ai

sin kLi cos kLi

]
.

3. THE SPEECH MANIFOLD

Consider the single tube acoustic tube filter with length L and

cross-sectional area A. The transfer function g, which deter-

mines the acoustic signal, is given by Equation 3. Let M1 be

the subset of L2 defined by

M1(IL, IA) = {g(ω,L,A)|L ∈ IL, A ∈ IA},

where Ix is an open interval of parameter x. Let Ih
L be the

range of human vocal tract lengths. Then, the set M1 has the

following properties (for details, see [4]):

1. The map φ : (L,A) ∈ R
2 → M1 defined by g is a

diffeomorphism for L ∈ Ih
L.

2. There exists l1, l2 ∈ Ih
L at which the tangent vectors

∂g1/∂L are linearly independent.

It follows from Item 1 that φ−1 is a coordinate chart on the

set M1. Therefore, M1 is formally a smooth two-dimension-

al manifold embedded in the ambient space L2. Furthermore,

Item 2 implies the existence of extrinsic manifold curvature.

Finally, the manifold M1 spans a subspace of L2 that is much

larger than the dimension of the manifold.

We saw in Equation 3 that the N -tube transfer function

solutions involve one matrix multiplication per tube segment.

It follows that solution complexity monotonically increases

with N . Therefore, the curvature and spanning properties de-

scribed above for the single tube case will apply for the N -

tube generalization as well. In general, the dimension of the

N -tube solution manifold is equal to the number of configu-

ration parameters independently varied (at most 2N ). For N
sufficiently large, the acoustic tube filter can simulate the vo-

cal tract to an accuracy that is limited only by the approxima-

tions used in the model. It follows that an approximate low-

dimensional manifold structure exists for the class of voiced

speech sounds.

We have presented our discussion of the manifold prop-

erties in terms of the filter transfer function. However, any

work with actual speech data will be in the form of a product

of the transfer function with an additional source spectrum.

In the case of sonorants, the vocal tract filter is driven by a

combination of periodic glottal vibration and stochastic, but

statistically regular, processes. For these sounds we can ana-

lytically model the source spectrum, allowing the set of out-

put pressure spectra to inherit the manifold properties of the

transfer function. For turbulence-driven obstruents, the man-

ifold interpretation cannot be formally developed. However,

individual obstruent phonemes still cluster naturally, and the

algorithm that we develop in the following section still ap-

plies under a clustering interpretation. Developing this theory

lies outside the scope of this paper.

4. AN INTRINSIC SPECTROGRAM

REPRESENTATION

A traditional spectrogram is the short time Fourier spectrum

of an audio signal. The spectrum at time ti is determined

using a short window of the signal centered about ti. Let si(t)
be the i-th signal window and let ŝi(ω) be the corresponding

H-dimensional discrete Fourier transform. The spectrogram

is then given by ŝ(ti, ωj) = ŝi(ωj) ∈ R
H .

Consider instead the formulation ŝ(ti, ωj) = fj(ŝi(ω)),
where each fj : R

H → R is the Cartesian projection map

defined by fj(v) = vj for v ∈ R
H . This formulation isolates

the choice of the Cartesian basis for the standard spectrogram

and emphasizes the role of alternative bases. In this light, our

goal in this section is to determine a set of projection maps,
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{fj}, that reflects the intrinsic geometry of the speech mani-

fold.

4.1. The Laplacian and graph Laplacian operators

The Laplacian operator on a Riemannian manifold M is the

second order differential operator typically denoted ∆M. It is

a positive semidefinite operator whose eigenfunctions form an

orthogonal basis for L2(M). If {λi} and {ei} are the sorted

eigenvalues and corresponding eigenfunctions of the Lapla-

cian, respectively, then any function f : M → R may be

written f =
∑

i aiei for some {ai}.

In addition to a natural basis, the Laplacian operator also

provides a measure of smoothness for functions. Given a

measure µ on L2(M), the functional

S[f ] =

∫
M

‖∇Mf‖2dµ = 〈∆Mf, f〉L2(M) (4)

increases as smoothness of f decreases [5]. Here, ∇M is the

gradient operator on M and 〈·, ·〉L2(M) is the L2 inner prod-

uct on M. It follows that the smoothness of an eigenfunction

is determined by the magnitude of the corresponding eigen-

value, since S[ei] = λi. Therefore, if we limit an eigenba-

sis expansion of a function f to finite terms, we can impose

any desired level of smoothness in the approximation. Fur-

thermore, each ei : M → R varies smoothly with geodesic

distance on M and is therefore faithful to the geometry of the

manifold.

In practice, we are not given the precise form of the man-

ifold M, so the Laplacian operator cannot be used directly.

Instead, we must implement the graph theory analogue as fol-

lows: Consider a manifold M embedded in R
H and N data

points x1, . . . xN ∈ M. We can construct an adjacency graph

with one vertex Vi per data point xi. We connect vertices Vi

and Vj with an edge of weight one if xi is one of the n near-

est neighbors of xj or xj is one of the n nearest neighbors

of xi. This graph can be represented by the adjacency matrix

W , which is symmetric and binary-valued. From this, we can

determine the so-called graph Laplacian, L = W −D, where

D is the diagonal matrix with elements Dii =
∑

j Wji.

The graph Laplacian is a positive semidefinite N × N
matrix that satisfies all the properties given above for the con-

tinuous Laplacian operator [5]. However, there are two main

differences in the graph analogue. First, we are now limited

to functions that are defined on the graph, not the entire mani-

fold. Second, the L2 inner product is now replaced by an R
H

inner product. The recent Laplacian eigenmaps dimension-

ality reduction algorithm [5] proceeds by solving the eigen-

value problem Lei = λiei, and projecting the points {xi}
onto m ≤ H lowest eigenvectors according to Pm(xi) =
(e2(i), . . . , em(i)). However, this method does not allow out-

of-sample extension as the projection is only defined on the

graph.

4.2. Unsupervised manifold learning

To achieve our goal of learning the intrinsic projection maps,

we can extend the Laplacian eigenmap approach out-of-sam-

ple by using a modified form of an unsupervised manifold

regularization algorithm, presented in [3]. In the unsuper-

vised learning setting, the algorithm input is a set of unla-

beled training data, x1, . . . , xN ∈ R
H , that forms a mesh of

data points that lie on the manifold. The optimization prob-

lem takes the form

f∗ = arg min
f∈HK

‖f‖2
K + ξfT Lf , (5)

where HK is the reproducing kernel Hilbert space (RKHS)

for the kernel K, L is the graph Laplacian as defined in Sec-

tion 4.1, and f = 〈f(xi), . . . , f(xN )〉T is the vector of values

of f on the graph. The first term is the extrinsic norm, limiting

the complexity of the solution in the ambient space. The sec-

ond term is graph analogue of the smoothness functional of

Equation 4. The single parameter ξ, then, determines the in-

trinsic smoothness of the functions determined. By the RKHS

representer theorem [3], the j-th component of our new pro-

jection map is then given by

f∗
j (v) =

N∑
i=1

αj
i K(xi, v), (6)

where {xi} are the input unlabeled data, and αj ∈ R
N is

the j-th eigenvector (sorted by eigenvalue) to the generalized

eigenvalue problem (ξI + LK)α = λKα. In this eigenvalue

problem expression, K is the N × N Gram matrix defined

on the input unlabeled data by Kij = K(xi, xj). Unlike the

unsupervised learning algorithm of [3], we are now interested

in all of the {fj}, not just one for binary classification. Note

that this set of projection maps is defined for all points in M,

not just those used to define L.

4.3. Intrinsic spectrogram algorithm

Returning to the goal of an intrinsic spectrogram representa-

tion, we need to supply as unlabeled data, {xi}, a large set of

phoneme Fourier spectra across all phonetic categories. This

provides the mesh on the speech manifold needed to create

the adjacency graph that defines the graph Laplacian. Solv-

ing the optimization problem of Equation 5 determines the

projection onto a basis that will differentiate a signal’s intrin-

sic trajectory on the manifold rather than its extrinsic one in

the ambient space. Given the low-dimensional curved man-

ifold structure to speech motivated in previous sections, we

expect phonetic content to be differentiated with fewer com-

ponents in this basis than with a traditional spectrogram. We

also expect a clustering of phonetic content to be reflected in

the intrinsic basis as well.

We created a dataset consisting of 10 examples of each of

the 58 phonemes, randomly chosen from the TIMIT database.

I  243



Fig. 1. Traditional (top) and intrinsic (bottom) spectrograms

for the word “advantageous”.

This is the requisite unlabeled training data required by the

unsupervised algorithm to determine the intrinsic basis func-

tions as described above. Since the {αj} can be precomputed

offline using this standard set, converting a traditional spec-

trogram into this intrinsic representation requires only a com-

putation of Equation 6 for each time window.

Fig. 1 shows the extrinsic (H = 50) and intrinsic spec-

trograms for a noisy recording of the word “advantageous”.

Here we construct the adjacency graph with n = 6 nearest

neighbors, take as the smoothness parameter ξ = 1, and im-

plement the linear kernel K(x, y) = xT y (see Equation 5).

Notice that most of the activity in the intrinsic representation

is contained in the first 10 components. This indicates that

the intrinsic representation is compressing relevant informa-

tion more efficiently than in the extrinsic case.

Fig. 2 shows various components of the intrinsic spectro-

gram overlaid on the recording’s waveform. These examples

demonstrate the intrinsic spectrogram ability to efficiently re-

flect phonetic distinction. The first component distinguishes

between signal and background noise. The third component

picks out the two occurrences of the vowel phoneme /æ/. The

fourth component picks out the fricative /s/. Finally, the 10th

component indicates the stops /t/ and /d/, nasal /n/, and af-

fricate /j/. The general trend is increasing distinction as the

component index increases. The lower eigenvectors, then,

provide broad class distinction, while the higher eigenvectors

serve to differentiate smaller nuances. It is not the case that

each component makes a single classification. However, the

number of components involved in a particular classification

is much smaller than if we attempt to determine phonetic con-
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Fig. 2. Four components of the intrinsic spectrogram (shown

in black) overlaid on the wave form.

tent using a standard spectrogram.

5. CONCLUSION

We have argued that speech sounds form a low-dimensional

curved manifold. From this, we have motivated the utility of

an intrinsic spectrogram representation. We have presented an

algorithm to approximate this intrinsic form and provided an

example demonstrating this method’s compact representation

of the phonetic dimensions.
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