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ABSTRACT

Speaker adaptation has been widely used in speech recognition.
With small amount of adaptation data, Reference Speaker Weight-
ing (RSW) adaptation was previously proposed for fast HMM adap-
tation, and has been shown to outperform the more commonly
used maximum likelihood linear regression (MLLR) adaptation.
Extending our previous work [1, 2] of applying the Polynomial
Segment Models (PSMs) in large vocabulary continuous speech
recognition (LVCSR) on the WSJ Nov 92 evaluation, we derive
the PSM-based RSW fast adaptation technique in this paper. Dif-
ferent from the HMMs, in which the model means are constants
within a state, the PSM means are curves represented by polynomi-
als. Experimental results showed that the PSM-based RSW gave
approximately the same relative improvement over the unadapted
model as in the HMM case. Comparing the PSM-based RSW and
MLLR, the PSM-based RSW is more powerful when the amount
of adaptation data available is limited. However, it could quickly
saturate with increase in adaptation data.

1. INTRODUCTION

Speaker adaptation has been widely used in speech processing
such as speaker verification and speech recognition to adjust the
parameters of the Speaker Independent (SI) models into the Speaker
Adapted (SA) models that match the test speaker. Different adap-
tation algorithms, such as the Maximum A‘Posterior Probability
(MAP) [3] adaptation, the Maximum Likelihood Linear Regres-
sion (MLLR) adaptation [4] and the EigenVoice (EV) [5] adapta-
tion were proposed for adapting HMMs. The effectiveness of these
algorithms depends on the amount of adaptation data.

Reference speaker weighting (RSW) adaptation was first pro-
posed by Hazen and Glass [6] for fast speaker adaptation with lim-
ited amount of adaptation data. Similar to EV, RSW estimates a
set of weights to combine the reference speaker vectors into a SA
model. Because the set of weights contains only a small number
of parameters, they can be reliably estimated with a small amount
of adaptation data. One difference between EV and RSW is that
the speaker space in RSW is simply the set of reference speaker
means, instead of the set of orthogonal eigenvectors in EV.

Most adaptation approaches were developed for the HMMs. In
recent years, researchers have examined alternatives to the HMMs
for representing the speech acoustics. One such alternative is the
segment models [7] that are generalizations of the HMMs but ex-
plicitly represent the speech dynamics and temporal correlations
between frames. The Polynomial Segment Model (PSM) [8] is

one type of segment models that represents the speech acoustics
with polynomial functions.

Complexity used to be a major limitation of the PSMs. In
our previous work [2, 9], we proposed a fast likelihood compu-
tation algorithm that significantly improved the PSM recognition
and training efficiency and in [1], we applied the PSMs on the large
vocabulary recognition tasks.

In order to make the PSM system comparable with the state-
of-the-art HMM systems, adaptation algorithms are needed. In [10],
PSM-based MAP adaptation was proposed. In this paper, we fo-
cus on the task of rapid adaptation and derive the PSM-based RSW
algorithm. Because the model means of the PSMs are curves in-
stead of constants (as in the HMMs) and because of the segmental
nature of the model, one cannot directly applied the HMM-based
RSW derivation for the PSMs.

In addition to deriving the PSM-based RSW adaptation, we
compare the PSM-based RSW with the HMM counterpart exper-
imentally using the Wall Street Journal (WSJ0) corpus. We also
compare the RSW algorithm with the MLLR under different amounts
of adaptation data. These results show that the PSM-based RSW
performs similarly to the HMM-based RSW but that RSW is better
than MLLR when the amount of adaptation data is small (less than
5 utterances) but MLLR is significantly better for larger amounts
of adaptation data.

The organization of this paper is as follows. In Section 2,
the basic formulation of the PSMs is presented. In Section 3, we
present the proposed PSM-based RSW adaptation algorithm. In
Section 4, we report the experimental setup and results using the
WSJ0 (standard SI-84 WSJ train-set and Nov’92 5000 words eval-
uation set). The paper is then concluded in Section 5.

2. POLYNOMIAL SEGMENT MODEL

The PSMs were first proposed in [8]. For a speech segment C with
N frames of D dimensional features, the N ×D feature matrix C
is modeled as

C = ZNB + E, (1)

where ZN is an N × (R + 1) design matrix for an Rth order
trajectory model that normalizes all segments to unit length, B is
an (R+1)×D parameter model matrix, and E is the residue error.

The maximum likelihood estimation of B is given by

B = [Z′
NZN ]−1Z′

NC (2)

and the corresponding residue error covariance Σ is given by

Σ =
(C − ZNB)′(C − ZNB)

N
(3)
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The triplet {B, Σ, N} can be viewed as the sufficient statistics
for C. For a set of segments C1,...,CK of model m, the maximum
likelihood estimation for B̂m and Σ̂m are given by

B̂m =

"
KX

k=1

Z′
Nk

ZNk

#−1 " KX
k=1

Z′
Nk

Ck

#
(4)

and

Σ̂m =

PK
k=1(Ck − ZNk B̂m)′(Ck − ZNk B̂m)PK

k=1 Nk

(5)

By considering a PSM as a Gaussian distribution with time
varying mean and covariance Σ, the log likelihood of the j-th seg-
ment, Cj = O

τj

τ̂j
, with length Nj = τj − τ̂j + 1, where τj is the

segment end and τ̂j is the segment beginning, can be written as

L(O
τj

τ̂j
|B̂m, Σ̂m) = −Nj

2

h
D log(2π) + log |Σ̂m|

i
−

1

2

NjX
t=1

h
(ot+τ̂j−1 − bt,m)Σ̂−1

m (ot+τ̂j−1 − bt,m)′
i

(6)

where bt,m is the tth row of the matrix ZNj B̂m. Because of space
limitation, we cannot further describe the PSMs. Readers can refer
to [2, 8] for a more in-depth discussion.

3. PSM-BASED RSW ADAPTATION

To improve the PSM recognition performance, speaker adaptation
is needed. In [10], the PSM-based MAP adaptation was proposed
while in [11], we proposed the PSM-based MLLR adaptation. For
very small amount of adaptation data, or for very fast adaptation,
EV or RSW adaptations are needed. Because the difference be-
tween EV and RSW lies in the representation of the “reference
speakers”, the adaptation procedure described here can also be ap-
plied for the PSM-based eigenvoice adaptation even though we use
the RSW notations and terminologies for convenience.

Given a set of speaker reference models, which typically are
the speaker models in the training data, the PSM-based RSW finds
the set of weights such that the weighted linear combination of the
reference speaker models maximizes the likelihood of the adapta-
tion data. Suppose there are S reference speakers. For the m-th
Gaussian, denote Bsi,m, Σsi,m as the mean and variance of the SI
model, Bi,m as the mean of the i-th reference speaker, and B̃m as
the mean of the adapted models. Also denote kr to be the weight
of the rth speaker reference. Then,

B̃m =
X

i

kiBi,m. (7)

Because the amount of adaptation data is small, the model vari-
ances are not adapted.

To maximize the likelihood of the adaptation data and be-
cause of the hidden nature of the model “states”, the expectation-
maximization (EM) algorithm is used that requires only the maxi-
mization of the expected log likelihood, Q(λ, λ̂). Define the pos-
terior probability of the segment that ends with model m at time t
with duration d as γt,d(m).

γt,d(m) =
p(qs(t) = m, τ̂s(t) = t − d + 1, τs(t) = t, OT

1 , |λ)

P (OT
1 )

,

where s(t) = m denotes the segment that includes time t is from
state m. Note that this notation is needed for segment represen-
tation because a segment covers multiple frames. Also note that
because of the segmental nature, the duration d is one of the in-
dexes in the posterior probabilities. This makes explicit that fact
that two segments from the same model and ends at the same time
but have different durations are considered different in the PSMs
and each has its own posterior probability.

The auxiliary function Q(λ, λ̂) can be written in terms of the
posterior probability γt,d(m).

Q(λ, λ̂) = P (OT
1 )
X
m,t

tX
d=1

γt,d(m) log P (Ot
t−d+1|B̃m, Σsi,m)

= P (OT
1 )
X
m,t

tX
d=1

γt,d(m)

j»
−d

2
[D log(2π)] + log |Σsi,m|

–

− 1

2

dX
f=1
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Σ−1
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ot−d+f −
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!′#)
(8)

where ψi,d,m,f is the f th row of ZdBi,m and is the sampled mean
of the i-th reference speaker at the f -th frame from the beginning
of the segment. Zd encapsulates the mapping between the unit
length polynomial mean and the length d duration of the segment.
Because the PSMs are segment based, summing over all the pos-
sible durations is necessary. For each segment, the inner sum over
f “accumulates” the frame-by-frame likelihoods.

To find the maximum, we start by differentiating Q(λ, λ̂) with
respect to the r-th weight, kr and setting it to zero. We have

0 =
X
m,t

tX
d=1

dX
f=1

γt,d(m)
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(9)

where Am,r,d,f = Σ−1
si,mψ′

r,d,m,f and is known. By re-arranging
the terms, we have

X
m,t

tX
d=1

γt,d(m)

dX
f=1

ot−d+fAm,r,d,f

=
SX

i=1

0
@X

m,t

tX
d=1

γt,d(m)
dX

f=1

ψi,d,m,fAm,r,d,f

1
A ki (10)

Since one such equation can be written for each reference
speaker, the S unknown weights can be solved using the S equa-
tions by standard techniques for solving system of equations 1.

1This is true only if the coefficient matrix is invertible.
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Instead of using the posterior probability γt,d(m), one can
also simplify the estimation of reference speaker weights by us-
ing the Viterbi state alignment. This, in effect, approximates the
summation by maximization and makes the γ’s into indicator func-
tions.

3.1. Reference Speakers Estimated using MLLR

During training, there may not be enough training data per speaker
to estimate the SD models. Instead, one may estimated the refer-
ence SD models using MAP or MLLR adaptation. For reference
speaker models obtained using MLLR adaptation, Equation 10 can
be simplified. Define Wr,m to be the MLLR transformation ma-
trix for the mth mixture of speaker r. Then, Equation 10 can be
rewritten as

X
m,t

tX
d=1

γt,d(m)

dX
f=1

ot−d+f Âm,r,d,f = (11)

SX
i=1

0
@X

m,t

tX
d=1

γt,d(m)
dX

f=1

ψd,m,fWi,mÂm,r,d,f

1
A ki

where ψd,m,f is the f -th row of Zdξm. ξm is an (R + 1) × (D +

R + 1) matrix composed of the original parameter matrix B̂si,m

with an (R + 1) dimensional identity matrix IR+1. Âm,r,d,f =
Σ−1

si,m(ψd,m,fWr,m)′ which again is known.
While computationally, this is not a big saving, it can signif-

icantly reduce memory usage. Instead of storing all the reference
speaker models during the adaptation process, it is now only nec-
essary to store the transformation matrices which are only a very
small fraction of the parameters to store compared to the full ref-
erence speaker models. Note that by expressing the likelihood as
a function of Wi,m in Eqn 11, different reference speakers are not
required to share the same regression class definitions.

4. EXPERIMENTS

LVCSR experiments were performed on the ARPA Wall Street
Journal (WSJ) 5k word task [12] with models trained using the
standard SI-84 train set (7138 utterances) and tested on the Nov’92
5000 word evaluation set (330 utterances). The HMM training and
decoding procedure and settings were similar to [1]. In short, we
used crossword triphone models with 16 mixture components, tied
with a decision-tree based clustering that results in approximately
3000 tied-states. With the standard bigram language model, our
best HMM baseline achieved a 7.81% WER which is compara-
ble with results from other researchers using the same test-set and
conditions [13]2

For the PSMs, each phoneme was represented by 3 indepen-
dent sub-phonetic segments which can be viewed as a special case
of the dynamic multi-region PSM [2]. Because of using 3 seg-
ments per phoneme, only first order PSM (linear) was used in-
stead of the more commonly used second order (quadratic) PSMs.
The PSM training followed the procedure described in [9]. The
8-mixture SI PSMs were trained with mixture splitting generally
followed [1]. However, instead of using the HMM state-tying in-
formation for the parameter sharing, we applied the PSM-based

2Better results may be achievable using a better lexicon, more training
data or a trigram language model. Given our limited resource, we used the
standard setup for ease of comparison

decision tree tying such that the PSM sub-phonetic segments were
treated like a HMM state resulting in approximately 3000 tied
states. Our previous results showed that the PSM-based tree out-
performed the HMM-based tree when large number of mixtures (4
or above) were used. The PSM recognition was performed using
N-Best and lattice re-scoring in which the N-best and lattices were
generated using the SI HMMs. While it is possible to perform a
full PSM search, our current PSM implementation does not sup-
port cross-word triphone decoding. Our re-scoring, however is dif-
ferent from other re-scoring work [14] in that the HMM alignment
was not used. Instead, a full search for optimal segment bound-
aries was performed using the fast PSM computation [2]. In this
paper, a 3-token lattice was generated from the 8-mixture HMM
with the N-Best size of 50. Our PSM 8-mixture SI result of 6.86%
word error rate is 12.2% relatively better than the corresponding
16 mixture HMM results but used about 25% less parameters.

4.1. RSW adaptation

The HMM-based RSW adaptation was performed on the 16-mixture
SI HMMs. All the available speakers in training (about 80) were
used as reference speakers3. The SD models for the reference
speakers were built using MLLR adaptation with 32 regression
classes [4] which were shared by all reference speakers. The RSW
adaptation was unsupervised and mostly with single adaptation ut-
terance. Each utterance was first decoded using the SI model and
then, the RSW adaptation was carried out using decoding output.
After determining the most likely weights to create the SA mod-
els, the utterance was decoded again using the adapted models.
For the PSMs, the adapted models were used to re-score the lattice
generated by the unadapted (SI) HMMs.

Model WER Relative Imp.
HMM (SI, 16mix) 7.81% -
HMM (RSW, 1utt) 7.0% 10.3%

Table 1. Performance of the HMM-based RSW adaptation

Tables 1 and 2 tabulate the results of the HMM-based and the
PSM-based RSW adaptation respectively with only one adaptation
utterance which is about 7 seconds on average. For the HMMs, the
RSW adaptation gave about 10% relative improvement while for
the PSMs, the improvement was about 7% relative. Both results
show that RSW is useful for fast adaptation when only very limited
amount of adaptation data is available. The relative improvement
of the PSM-based RSW is worse than the HMM-based RSW adap-
tation. One should note that our adapted PSMs are in fact about
10% relative better than the HMMs in the overall word error rate
and thus, improvement from RSW may be smaller. Another possi-
ble reason is in the lattice quality used in the re-scoring paradigm.
These lattices were generated by the unadapted HMMs which have
a one-best performance of almost 1.5% worse than the adapted
PSMs. To see whether lattice quality is an issue, lattices generated
by the adapted HMMs (with WER 7.0%) were used and rescored
by the RSW adapted PSMs. These results are shown in the third
row of Table 2 which gave a small improvement. This improve-
ment can come from the combination of two possible sources: a

3While slightly better performance may be obtained by careful selec-
tion of reference speakers, it is not the focus of this paper and using all
speakers allows us to avoid the heuristic of reference speaker selection.
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Fig. 1. Comparison between the PSM-based RSW and MLLR

better search space in the lattice or, the combinational effect of
both the HMM adapted model and the PSM adapted model.

Model WER Relative Imp.
PSM (SI, 8mix) 6.86% -

PSM (RSW, 1utt) 6.41% 7%
PSM (RSW, adapted lattice) 6.3% 8.1%

Table 2. Performance of the PSM-based RSW adaptation

4.2. Comparison between the PSM-based RSW and MLLR
adaptation

While the RSW adaptation works very well with very limited adap-
tation data, it is interesting to see how it performs compared to
MLLR under different amounts of adaptation data, and find the
point at which these two algorithms intersect.

Figure 1 shows the performance comparison between the PSM-
based MLLR and the PSM-based RSW adaptation against various
amounts of adaptation data (shown by the number of utterances).
When the amount of adaptation data was very limited such as with
only one utterance, the RSW performed significantly better than
MLLR. With such small amount of adaptation data, the MLLR
adaptation is not very useful. When the amount of adaptation data
increases, MLLR consistently improves while the RSW improves
slightly up to 5 utterances. The results for RSW are so flat that
between 1 to 10 utterances of adaptation data, the performance
variation is less that 0.1% absolute error. This is consistent with
our intuition that because the number of adaptation parameters is
small for RSW, it is only good for very limited amount of adapta-
tion data.

5. CONCLUSION

In this paper, we extended the PSMs by deriving the PSM-based
RSW to improve the recognition accuracy. We observed that the
proposed PSM-based RSW adaptation gave similar, but slightly
worse relative improvement compared to the HMM-based RSW
adaptation. Possible reasons include the relatively better SI per-
formance of the PSMs and the quality of the lattice in re-scoring.
In order to resolve the lattice quality problem, one of our future
work in PSMs is to implement a cross-word decoder to perform
full recognition search.

In addition, we also showed that the PSM-based RSW adapta-
tion was only suitable for fast adaptation with very few adaptation
utterances (say a few seconds). When more data are available,
other adaptation algorithms like the MLLR, should be applied.
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