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ABSTRACT

We would like to revisit a simple fast adaptation technique
called reference speaker weighting (RSW). RSW is similar to
eigenvoice (EV) adaptation, and simply requires the model of
a new speaker to lie on the span of a set of reference speaker
vectors. In the original RSW, the reference speakers are com-
puted through a hierarchical speaker clustering (HSC) algo-
rithm using information such as the gender and speaking rate.
We show in this paper that RSW adaptation may be improved
if those training speakers that have the highest likelihoods
of the adaptation data are selected as the reference speakers;
we call them the maximum-likelihood (ML) reference speak-
ers. When RSW adaptation was evaluated on WSJ0 using
5s of adaptation speech, the word error rate reduction can
be boosted from 2.54% to 9.15% by using 10 ML reference
speakers instead of reference speakers determined from HSC.
Moreover, when compared with EV, MAP, MLLR, and eKEV
on fast adaptation, we are surprised that the algorithmically
simplest RSW technique actually gives the best performance.

1. INTRODUCTION

Model-based adaptation methods like the speaker-clustering-
based methods [1], the Bayesian-based maximum a posteri-
ori (MAP) adaptation [2], and the transformation-based maxi-
mum likelihood linear regression (MLLR) adaptation [3] have
been popular for many years. Nevertheless, when the amount
of available adaptation speech is really small — for example,
only a few seconds — other techniques are required to further
reduce the number of adaptation parameters.

Two similar fast-speaker adaptation methods were pro-
posed at around the same time: reference speaker weighting
(RSW) [4, 5] in 1997 and eigenvoice (EV) [6, 7] in 1998. Both
methods require the model of a new speaker to lie on the span
of some reference vectors; they differ only in the ways the
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reference vectors are computed. Eigenvoice employs princi-
pal component analysis to find a set of orthogonal basis vec-
tors for the purpose, and these eigenvectors are commonly
known as eigenvoices. On the other hand, RSW, in its sim-
plest form, simply selects a subset of training speakers and
uses their models as the references. It has been shown that
when there are only a few seconds of adaptation data, both
adaptation approaches may improve the recognition perfor-
mance of the speaker-independent model significantly by us-
ing only a small set of reference vectors (say, fewer than 10).
However, it seems to us that while EV has drawn a lot of at-
tention and spawns a myriad of eigenspace-based adaptation
methods such as eigen-MLLR[8], eigenspace mapping [9],
and kernel eigenvoice [10, 11], etc., the simpler RSW adapta-
tion technique has not been as well known as it should be.

In this paper, we would like to revisit the reference speaker
weighting technique, and suggest the use of maximum-likelihood
(ML) reference speakers to further improve its performance.
The use of ML reference speakers is motivated by our previ-
ous work on the embedded kernel eigenvoice (eKEV) adapta-
tion [12, 11]. In eKEV adaptation, a speaker-adapted model is
first formulated in a high-dimensional kernel-induced feature
space, and is then mapped back to an approximate pre-image
in the input speaker space. The pre-imaging process is guided
by the principle of multi-dimensional scaling with the use of
distance constraints between the new speaker and his “clos-
est” neighbors. In [11], we showed that the use of a few ML
neighbors in eKEV resulted in good adaptation performance.

This paper is organized as follows. We first review the
theory of reference speaker weighting (RSW) in the next Sec-
tion, and discuss two different ways of defining the reference
speakers in Section 3. RSW was evaluated on the Wall Street
Journal corpus WSJ0 in Section 4. Finally, in Section 5, we
present some concluding remarks.

2. REFERENCE SPEAKER WEIGHTING (RSW)

In this section, we will review the theory of reference speaker
weighting in its simplest form. It is basically the same as
that in [5] except with some minor modifications that will be
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pointed out later.
Let’s consider a speech corpus consisting of N training

speakers with diverse speaking or voicing characteristics. A
speaker-independent (SI) model is first estimated from the
whole corpus. The SI model is a hidden Markov model (HMM),
and its state probability density functions are modeled by mix-
tures of Gaussians. Let’s further assume that there are a total
of R Gaussians in the SI HMM. Then, a speaker-dependent
(SD) model is created for each of the N training speakers
by MLLR transformation [3] of the SI model, so that all SD
models have the same topology. To perform RSW adaptation,
each SD model is represented by what is called a speaker
supervector that is composed by splicing all its R Gaussian
mean vectors together.

In RSW adaptation, a subset of M reference speakers
Ω(s) is chosen among the N training speaker with M ≤ N
for the adaptation of a new speaker s. (Notice that the set of
reference speakers, in general, is different for different new
speakers.) Let Y = {y1,y2, . . . ,yM} be the set of refer-
ence speaker supervectors. Then the RSW estimate of the
new speaker’s supervector is

s ≈ s(rsw) =
M∑

m=1

wmym = Yw , (1)

and for the mean vector of the rth Gaussian,

s(rsw)
r =

M∑
m=1

wmymr = Yrw . (2)

where w = [w1, w2, . . . , wM ]′ is the combination weight
vector.

In the ML estimation of w, given the adaptation data O =
{ot, t = 1, . . . , T}, one maximizes the following Q(w) func-
tion:

Q(w) = −
R∑

r=1

T∑
t=1

γt(r)(ot − s(rsw)
r (w))′C−1

r (ot − s(rsw)
r (w))

where γt(r) is the posterior probability of observing ot in
the rth Gaussian, and Cr is the covariance matrix of the rth
Gaussian. The optimal weight vector may be found by simple
calculus as follows:

∂Q
∂w = 2

R∑
r=1

T∑
t=1

γt(r)Y′
rC

−1
r (ot − Yrw) = 0

⇒
R∑

r=1

T∑
t=1

γt(r)Y′
rC

−1
r ot =

R∑
r=1

T∑
t=1

γt(r)Y′
rC

−1
r Yrw

⇒ w =

[
R∑

r=1

(
T∑

t=1

γt(r)

)
Y′

rC
−1
r Yr

]−1

[
R∑

r=1

Y′
rC

−1
r

(
T∑

t=1

γt(r)ot

)]
. (3)

Thus, the weights w may be obtained by solving a system
of M linear equations.

Our description is simpler than [5] in that

• the speaker model is simply represented by a speaker
supervector as commonly used in eigenvoice adapta-
tion. In [5], it is represented by some centroid of the
Gaussian components of each HMM state.

• [5] also requires
∑M

m=1 wm = 1. We remove this con-
straint and allow the new speaker to be anywhere in the
span of the M reference speaker supervectors.

Notice that the reference speaker vectors in the descrip-
tion above may be generalized to any set of reference vectors.

3. REFERENCE SPEAKERS SELECTION

In this paper, we will investigate two ways of selecting the
reference speakers for a new speaker.

1. Hierarchical Speaker Clustering (HSC)
The training speakers are hierarchically clustered of-
fline onto a tree structure [1] using criteria such as speak-
ing rate, gender, voice characteristics, etc. During the
RSW adaptation of a new speaker, his adaptation data
are first classified into one of the leaf clusters of the
HSC tree, and the training speakers belonging to that
leaf cluster are his reference speakers.

2. Maximum-Likelihood (ML) Reference Speakers
At the beginning of RSW adaptation of a new speaker,
the likelihood of his adaptation speech with respect to
each training speaker model is computed and sorted in
descending order. The top M training speakers who
have the highest likelihood of the adaptation data are
taken as the reference speakers of the new speaker. The
hypothesis is that the new speaker should be closest to
those speakers, and, thus, in their span.

4. EXPERIMENTAL EVALUATION

The fast speaker adaptation performance of reference speaker
weighting (RSW) was tested on the Wall Street Journal speech
corpus WSJ0 [13] using 5s and 10s of adaptation data in the
supervised mode.

4.1. WSJ0 Corpus

The standard SI-84 training set was used for training the speaker-
independent (SI) model. It consists of 83 speakers and 7138
utterances for a total of about 14 hours of training speech.
The standard nov’92 5K non-verbalized test set was used for
evaluation. It consists of 8 speakers, each with about 40 utter-
ances. During evaluation, for each of the 8 testing speakers,
1–3 utterances of his speech were randomly selected so that
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the amount of adaptation speech is about 5s or 10s (or, 4s and
8s respectively if one excludes the silence portions), and his
adapted model was tested on his remaining speech in the test
set. Notice that all test data are not endpointed before recog-
nition. This was repeated three times and the three adaptation
results were averaged before they were reported. Finally, a bi-
gram language model of perplexity 147 was employed in this
recognition task.

4.2. Acoustic Modeling

The traditional 39-dimensional MFCC vectors were extracted
at every 10ms over a window of 25ms. The speaker-independent
(SI) model consists of 15,449 cross-word triphones based on
39 base phonemes. Each of them was modeled as a contin-
uous density HMM (CDHMM) which is strictly left-to-right
and has three states with a Gaussian mixture density of 16
components per state. The SI model has a word recognition
accuracy of 92.13% on the test data.

The SD models were created by MLLR adaptation using
a regression class tree of 32 classes.

Table 1. RSW performance on WSJ0 using different types of
reference speakers. Results are word accuracies in %. (Fig-
ures in parentheses are the WER reductions in %.)

Reference
Speakers

#Speakers 5s 10s

HSC ˜14 92.33 (2.54) 92.41 (3.43)
ML 10 92.85 (9.15) 92.78 (8.26)

4.3. Effect of Different Reference Speaker Selections

RSW was tested with two different definitions of reference
speakers:

• All 83 training speakers were clustered by hierarchical
speaker clustering (HSC) as in [5]. Thus, the speakers
were first clustered according to their gender and then
their speaking rate. Three speaking rates were defined:
slow, medium, and fast. As a result, we got a cluster-
ing tree with six leaves — speaker clusters — and each
cluster consists of roughly 14 training speakers.

• M maximum-likelihood (ML) reference speakers as de-
scribed in Section 3. M is set to 10.

The results are shown in Table 1. It can be seen that
the definition of reference speakers is essential to the per-
formance of RSW adaptation. For example, with only 5s of
adaptation speech, the clustered speaker groups based on gen-
der and speaking rate give only a small improvement of 2.54%
reduction in the word error rate (WER); on the other hand, the

use of 10 ML reference speakers boosts the WER reduction
to 9.15%.

Hereafter, ML reference speakers are used in all RSW
adaptation experiments.

4.4. Effect of the Number of ML Reference Speakers
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Fig. 1. Effect of the number of ML reference speakers on
RSW.

The idea of using HSC or ML reference speakers is to
make use of the most important local information to reduce
the number of estimation parameters. In this experiment, we
would like to investigate the effect of additional reference
speakers by doubling the number of reference speakers un-
til all 83 training speakers were used. The results are plotted
in Fig. 1. The figure shows that

• The performance of RSW with 5s adaptation and 10s
adaptation is very similar, indicating that the method
saturates very fast between 5s and 10s.

• The 10s adaptation performance seems to be more steady
as it improves monotonically with additional reference
speakers until it saturates with 40 ML reference speak-
ers.

• However, in both cases, it shows that, in this task, using
all training speakers as the reference speakers gives the
best adaptation performance.

4.5. Comparison with Other Adaptation Methods

Finally, RSW adaptation was compared with the SI model and
the following common adaptation methods:

EV: the speaker-adapted (SA) model found by EV adapta-
tion [14].

MAP: the SA model found by MAP adaptation [2].
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MLLR: the SA model found by MLLR adaptation [3].

eKEV: the SA model found by the embedded kernel eigen-
voice adaptation method [11].

Table 2. Comparing RSW with other common adaptation
methods on WSJ0. Results are word accuracies in %. (Fig-
ures in parentheses are the WER reductions in %.)

Model/Method 5s 10s
SI 92.13 92.13
EV 92.46 (4.19) 92.51 (4.83)

MAP 92.48 (4.45) 92.47 (4.32)
MLLR 92.32 (2.41) 92.98 (10.8)
eKEV 92.86 (9.28) 92.92 (10.0)
RSW 93.44 (16.6) 93.23 (14.0)

For each adaptation method, we tried our best effort to
get the best performance. MAP and MLLR were performed
using HTK, and we implemented the other adaptation meth-
ods. For MAP, the best results with a scaling factor in the
range of 3–12 were reported; MLLR made use of a regression
tree of 32 regression classes, and the better results of using
diagonal- or full-MLLR transforms were reported; the basic
EV was implemented and 10 eigenvoices were found to give
good results; for eKEV adaptation, 10 ML reference speakers
gave the best results; finally, the best RSW results using all
83 training speakers as reference speakers were used for the
comparison. The results are summarized in Table 2.

From Table 2, we are surprised that the algorithmically
simplest RSW technique actually gives the best fast adapta-
tion performance.

5. CONCLUSIONS

In this paper, we revisit the use of reference speaker weighting
for fast speaker adaptation on a large-vocabulary task WSJ0.
We also simply select a subset of training speakers as the ref-
erence speakers instead of more complicated speaker-clustered
models. We find that the maximum-likelihood of the adapta-
tion data can be a good measure to select the reference speak-
ers among the training speakers. Moreover, we found that
for WSJ0 with only 83 training speakers, using all training
speakers will give the best RSW performance for both 5s and
10s adaptation. However, we believe that for a larger speech
corpus with many more training speakers, one may still want
to use a subset of M maximum-likelihood reference speak-
ers for RSW adaptation in order to reduce the computation in
the estimation of the combination weights which has a com-
plexity of O(M3). This is further supported by our finding
on WSJ0 that for 10s adaptation, RSW performance using 40

ML reference speakers is as good as that using 83 ML refer-
ence speakers. Further experiments with more speech corpora
of various sizes of training speakers are needed.
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