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ABSTRACT

We propose a non-linear model space transformation for speaker or
environment adaptation based on weighted kernel ridge regression
(KRR). The transformation is given by a generalized least squares
linear regression in a kernel-induced feature space operating on
Gaussian mixture model means and having as targets the adapta-
tion frames. Using the “kernel trick”, the solution to the optimiza-
tion problem is obtained by solving a system of linear equations
involving the Gram matrix of the input variables. We show that
MLLR is a special case of KRR when a linear kernel is employed.
Furthermore, we study an efficient low-rank approximation to the
kernel matrix termed “rectangle method”, where the regressors are
chosen to be a small set of clustered adaptation frames. Exper-
iments conducted on the EARS database (English conversational
telephone speech) indicate that KRR with a Gaussian RBF kernel
outperforms standard regression class-based MLLR.

1. INTRODUCTION

In recent years, there has been a surge of interest in the study
of non-linear transformations for automatic speech recognition.
These transformations are used to either alter the features as in [9],
or the acoustic model parameters as in [12], in order to improve
the discriminability among phonetic classes. A second common
application of non-linear transforms is in the context of speaker
adaptation where the goal is to warp the test data to match the
characteristics of the training data [3, 11, 14]. Here, we distin-
guish between parametric and non-parametric techniques. One
example of a non-parametric technique was introduced in [3] and
consists in matching the overall cumulative distribution function
(CDF) of the adaptation data to the CDF of the training data on a
per dimension basis. This idea has been further developed in [11],
where the CDFs for every training and test speakers are warped
to the same Gaussian distribution. Among the parametric tech-
niques for adaptation, we can mention the work of [14], where
the authors compute a linear projection from a high dimensional
Gaussian posterior space to the normal feature space similar to the
fMPE transformation [9]. Unlike fMPE however, the projection is
estimated using maximum likelihood.

The common denominator of these non-linear parametric meth-
ods, whether for discriminative acoustic model training or for adap-
tation, is the use of gradient descent procedures to solve the vari-
ous optimization problems. While this may be feasible for train-
ing, where the transformation has to be estimated only once, it
becomes costly in the case of speaker adaptation. One appealing
property of maximum likelihood linear regression (MLLR) [6] is
the simplicity of the solution. Indeed, each row of the MLLR ma-
trix can be obtained by solving a single system of linear equations.
The question that we address in this paper is the following: can

we extend MLLR to a non-linear transformation while keeping the
desirable property of having a closed-form solution ?

The observation that we are exploiting in this paper is that, for
MLLR, both the optimization problem and the regression function
can be expressed solely in terms of dot products between vectors
(Gaussian means). Indeed, by writing one row of the transform as
a linear combination of Gaussian means, the optimization can be
written using linear combinations of inner products between vec-
tors. We then can use a very popular technique in kernel-based
machine learning called the “kernel trick” which consists in re-
placing those dot products with evaluations of an arbitrary kernel
function. The result is a generalized least squares linear regres-
sion in a kernel-induced feature space and is termed kernel ridge
regression or KRR [2, 10].

One potential drawback of KRR is the size of the optimization
problem: we turn an n-dimensional problem with n being the di-
mension of the feature space into an �-dimensional problem with �
being the number of samples (i.e. adaptation frames). This entails
the use of regularization to avoid overfitting. In addition, we will
have to employ approximation techniques for the kernel matrix.

The application of kernel methods to speech recognition is not
new. In [7], the authors use kernel PCA for improved feature ex-
traction. The work described in [4] applies kernel discriminant
analysis for a similar purpose. A more closely related work to this
paper is kernel eigenspace-based MLLR proposed in [8]. There,
the authors use kernel PCA to derive a set of eigenmatrices from
speaker-dependent MLLR matrices in the kernel-induced feature
space. The main difference here is that we employ kernels in the
transformations themselves as opposed to “kernelizing” the space
of MLLR transformations.

The paper is organized as follows: in section 2, we outline the
derivation of kernel ridge regression and highlight the connection
with MLLR. In section 3, we present some experimental evidence
of its utility followed by some concluding remarks in section 4.

2. KERNEL RIDGE REGRESSION

We are given a training set S = {(x1, y1), . . . , (x�, y�)}, consist-
ing of � independent identically distributed samples drawn from
some unknown joint probability distribution.

We consider the n-dimensional regression problem, where the
� training examples satisfy xi ∈ IRn, yi ∈ IR, for all i. Our goal
is to learn a function f : IRn → IR that approximates the training
examples and that will generalize well on new examples. One way
to measure the performance of f on S is to define a smooth loss
function L(y, f(x)) and to compute the empirical risk

L[f ] =

�∑
i=1

L(yi, f(xi)) (1)
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The problem of finding f which minimizes L[f ] is ill-defined
because we have not specified the set of allowable functions. If
we restrict the solution to lie in a bounded convex subset of a re-
producing kernel Hilbert space (RKHS) H defined by a positive
definite kernel function K, the following regularized problem is
well-defined:

min
f∈H

L[f ] + λ||f ||2K (2)

where ||.||K represents the norm of a function inH and λ is a regu-
larization parameter. Recall that a positive definite kernel function
K : IRn × IRn → IR implements a dot product in some feature
space i.e. there exists Φ : IRn → Ω such that

K(x,y) =< Φ(x), Φ(y) > (3)

with < ·, · > denoting the standard dot product in the kernel in-
duced feature space Ω. Moreover, H is an RKHS if

< K(·, x), f >= f(x), ∀f ∈ H (4)

In fact, H is a vector space containing all linear combinations
of the functions K(x, ·) [5]

H = {f |f(·) =

m∑
i=1

αiK(xi, ·)} (5)

Back to the problem at hand, the representer theorem1 (Kimel-
dorf and Wahba, 1971) states that, if the loss function L is only
pointwise dependent on f , the solution to (2) has the form

f∗(x) =

�∑
i=1

ciK(x,xi) (6)

Using (4) and (6), let us now derive the norm for functions in
the above form

||f ||2K = < f(·), f(·) >

= <

�∑
i=1

ciK(xi, ·), f(·) >

=

�∑
i=1

ci < K(xi, ·), f(·) >

=

�∑
i=1

cif(xi)

=

�∑
i=1

ci(

�∑
j=1

cjK(xi,xj))

= cT Kc

(7)

where K now denotes the � × � Gram matrix whose (i, j)th entry
is K(xi,xj). We can rewrite (2) now as

min
c∈IR�

�∑
i=1

L(yi,

�∑
j=1

cjK(xi,xj)) + λcT Kc (8)

In this paper, we concentrate on the simple square loss function

L(y, f(x)) = (y − f(x))2 (9)

1A nice proof of which can be found in [5].

By converting everything to vector notation, (8) becomes

min
c∈IR�

(y − Kc)T (y − Kc) + λcT Kc (10)

This is a convex differentiable function, so we can find the
minimum simply by taking the derivative with respect to c and
setting it to zero

(y − Kc)T (−K) + λcT K = 0
⇔ (Kc − y) + λc = 0
⇔ (K + λI�)c = y

(11)

where we have made the tacit assumption that K is invertible. We
see that the KRR problem can be solved by solving a single system
of linear equations. Herein lies the beauty of this method: one can
perform powerful non-linear least squares regression and still have
a closed form solution.

2.1. Rectangle approximation method for KRR

Solving (11) has a complexity of O(�3) which becomes rapidly
intractable for a large sample size �. One way around this is to
limit the expansion in (6) to a much smaller number of non-zero
coefficients, i.e.

f∗(x) ≈
m∑

i=1

ciK(x,xi) (12)

with m � �. However, we still compute the contribution of all
the samples to the objective function. More precisely, we look for
c ∈ IRm which minimizes

min
c∈IRm

(y − K�mc)T (y − K�mc) + λcT Kmmc (13)

where K�m and Kmm are respectively, � × m and m × m kernel
matrices. A derivation similar to (11) leads us to the equation

(Km�K�m + λKmm)c = Km�y (14)

which can be solved now in O(m3). So far, we have not said
anything about the choice of the xi’s in (12). The standard prac-
tice in kernel techniques which use the rectangle approximation
method appears to be to choose a subset of size m of the original
training set. We believe that a more judicious way would be to
cluster the training set to m cluster centers and use those as xi’s.
This opens up an interesting perspective: it is possible to opt for
a set of regressors which are completely unrelated to the training
samples, say z1, . . . , zm, zi ∈ IRn and perform KRR on those.
In particular, we use in our experiments regressors given by clus-
tered adaptation frames even though the transform is applied to the
Gaussian means.

2.2. Weighted KRR

It is sometimes helpful to give different weights to the contribu-
tions of different samples to the objective function. This is par-
ticularly pertinent for speaker adaptation where there is an inher-
ent uncertainty in the alignment between adaptation frames and
Gaussian means. Using matrix notation, weighted (or generalized)
KRR can be formulated as
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min
c∈IR�

(y −Kc)T W(y −Kc) + λcT Kc (15)

where W = diag(w1, . . . , w�) is a diagonal weight matrix. Sim-
ilarly, the rectangle method for weighted KRR leads to

min
c∈IRm

(y − K�mc)T W(y − K�mc) + λcT Kmmc (16)

with the solution satisfying

(Km�WK�m + λKmm)c = Km�Wy (17)

Here we assumed that Km�WK�m + λKmm is positive def-
inite for the solution to be a minimum which imposes certain con-
straints on W (such as positive weights).

2.3. Connection with MLLR

MLLR is a form of generalized least squares linear regression. For
a specific dimension d, the objective function for MLLR can be
formulated as follows:

min
ad∈IRn

T∑
t=1

N∑
j=1

γt(j)

σ2
jd

(otd− < ad, µj >)2 (18)

where ad ∈ IRn is row d of the MLLR matrix, o1, . . . ,oT are
adaptation frames, (µj ,Σj) are respectively, the mean and diag-
onal covariance matrix of Gaussian j, and γt(j) is the posterior
probability of mixture component j at time t. Defining

• wi = γt(j)

σ2
jd

,

• xi = µj ,

• yi = otd, i = (1, 1) . . . (t, j) . . . (T, N)

leads us to the familiar weighted regression equation

min
ad∈IRn

TN∑
i=1

wi(yi− < ad,xi >)2 (19)

Now, if rank(x1, . . . , xTN) = n, for every ad ∈ IRn there
exist c1, . . . , cTN such that ad =

∑TN

i=1
cixi. Plugging this back

into (19), we have

min
ad∈IRn

TN∑
i=1

wi(yi− < ad,xi >)2 =

min
c∈IRT N

TN∑
i=1

wi(yi− <

TN∑
j=1

cjxj ,xi >)2 =

min
c∈IRT N

TN∑
i=1

wi(yi −
TN∑
j=1

cj < xj ,xi >)2 =

min
c∈IRT N

TN∑
i=1

wi(yi −
TN∑
j=1

cjK(xj ,xi))
2

(20)

where K(xi,xj) =< xi,xj > is the standard dot product in IRn.
It follows that MLLR is a special case of weighted KRR with a
linear kernel function and no regularization.

Two observations can be made. The first is that the complexity
of KRR appears to be O((TN)3). In practice however, only few
Gaussian components have non-zero weights (i.e. posteriors) at a
given time which reduces the complexity to O(T3). In addition,
the rectangle approximation method can lower the complexity to
O(m2T ) for matrix multiplications and O(m3) for system solv-
ing.

The second observation has to do with the regularization term.
From a Bayesian perspective, the quantity cT Kc acts as a Gaus-
sian prior on the expansion coefficients, that is

c ∼ N (0,K−1)

This is similar to maximum a posteriori linear regression (or
MAPLR) [1] with the main difference being that, in MAPLR, the
prior is applied directly to the rows of the transform.

3. EXPERIMENTS AND RESULTS

The experiments were conducted on the EARS database (English
conversational telephone speech). The training data consists of
2300 hours of telephone conversations between two strangers on a
preassigned topic. We based the experiments on our first-pass de-
coding setup from the RT’04 evaluation. The acoustic model uses
a pentaphone context decision tree and comprises 149K 40-dimen-
sional Gaussians which are discriminatively trained with MPE.
The acoustic features are obtained by transforming every 9 con-
secutive 13-dimensional PLP cepstral frames through LDA and
MLLT to a 40-dimensional space. More details about the system
can be found in [13].

The test set consists of 36 two-channel conversations (72 speak-
ers) totaling 3 hours of speech and 37.8K words released by NIST
as the DEV’04 set. The amount of adaptation data per speaker is
roughly 150 seconds suggesting a size of � = 15000 × 149000 in
the regression problems. In practice, only two Gaussians per frame
are active on average because we only keep the pairs of frames and
Gaussian means for which the posterior probability exceeds 0.1
(leading to � = 27600). The complexity is further reduced using
the rectangle approximation method.

For MLLR, we use a regression tree obtained by a top-down
clustering of the Gaussians to a depth of 5. The number of trans-
forms is controlled by a minimum count threshold of 4000 frames
per transform. For KRR, we cluster the adaptation frames using
EM to a variable number of clusters per speaker. The number of
clusters (m in the rectangle approximation method) is controlled
by a minimum count threshold of 500 frames per cluster. Finally,
we use equation (17) to compute the KRR transforms for various
kernel functions. Similarly to fMPE [9], we don’t actually update
the means directly; instead we compute offsets to the means so that
a null transform will leave the original means unaffected, i.e.

µ̂ = µ +

[
f1(µ)
· · ·

fn(µ)

]
= µ +

⎡
⎣

∑m

j=1
c1jK(µ, xj)

· · ·∑m

j=1
cnjK(µ, xj)

⎤
⎦ (21)

In Table 1, we give a comparison of the various adaptation
techniques. For the Gaussian RBF kernel, we set σ = 100 and
λ = 0.1 for all the kernels. In the last line of Table 1, we used
two regression classes for KRR (speech and non-speech). Interest-
ingly, KRR with a quadratic kernel exhibits the same performance
as linear KRR (and single-transform MLLR), whereas the expo-
nential kernel outperforms the other methods. These results war-
rant studying the RBF kernel in more detail. This kernel function
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Baseline 23.0%
MLLR single transform 21.5%
MLLR multiple transforms 21.3%
KRR K(x,y) = x · y 21.5%
KRR K(x,y) = (x · y + 1)2 21.5%
KRR K(x,y) = (x · y + 1)3 21.7%
KRR K(x,y) = exp(−||x− y||2/σ) 21.1%
KRR same with 2 transforms (speech,silence) 20.8%

Table 1: Word error rates for MLLR and KRR on the DEV’04 test
set.

implements a similarity measure between vectors: vectors close
together will have a higher kernel value than those which are far
apart. The degree of similarity is controlled by the kernel width σ.
For very small widths, the kernel acts as a δ function outputting
zero if the arguments are different. KRR with such a kernel will
tend to leave the Gaussian means unchanged so we expect a per-
formance closer to the baseline. On the other hand, a very flat
kernel will behave like a linear kernel and KRR should exhibit a
performance which is closer to MLLR. This intuitive behavior can
be verified in Figure 1, where we plot the word error rate as a func-
tion of σ.
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Figure 1: Word error rate as a function of log10(σ) for KRR with
a Gaussian RBF kernel.

4. CONCLUSION

In this paper, we discussed the applicability of kernel ridge regres-
sion to the problem of transform-based speaker adaptation. We
started from the observation that MLLR is a form of generalized
least squares linear regression and that both the function and the
optimization can be expressed entirely in terms of dot products
of the Gaussian means. We then applied the “kernel trick” and
turned those dot products into arbitrary kernel function evalua-
tions. This has the effect of embedding the input features into a
kernel-induced feature space and performing linear regression in
that space which, in turn, is equivalent to performing non-linear
weighted least squares regression in the original space.

Experimental results on the EARS database suggest that KRR
with an exponential kernel outperforms KRR with polynomial ker-
nels and MLLR. Like for MLLR, the result can be further im-

proved by using multiple regression classes and transforms for
KRR. An open question which needs to be addressed is the same
which plagues many other kernel-based machine learning tech-
niques namely, the choice of the kernel. Indeed, so far we have
not attempted to optimize the regressors or the kernel function.
This remains the subject of future research.
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