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ABSTRACT

Adaptive training is a powerful technique to build system on non-
homogeneous training data. Here, a canonical model, representing
“pure” speech variability and a set of transforms representing un-
wanted acoustic variabilities are both trained. To use the canonical
model for recognition, a transform for the test acoustic condition
is required. For some situations a robust estimate of the transform
parameters may not be possible due to limited, or no, adaptation
data. One solution to this problem is to view adaptive training
in a Bayesian framework and marginalise out the transform pa-
rameters. Exact implementation of this Bayesian inference is in-
tractable. Recently, lower bound approximations based on varia-
tional Bayes have been used to solve this problem for batch adapta-
tion with limited data. This paper extends this Bayesian adaptation
framework to incremental adaptation. Various lower-bound ap-
proximations and options for propagating information within this
incremental framework are discussed. Experiments using adap-
tive models trained with both maximum likelihood and minimum
phone error training are described. Using incremental Bayesian
adaptation gains were obtained over the standard approaches, es-
pecially for limited data.

1. INTRODUCTION

Adaptive training is a powerful approach to build speech recog-
nition systems on non-homogeneous data [1]. During training,
two sets of parameters are extracted. The first set is the canonical
model parameters, which represent the “pure” speech variability.
The second set, the transform parameters, represent any unwanted
variability, such as speaker and acoustic condition changes. A
separate transform is used to represent each homogeneous block
of data, e.g. from a particular speaker/environment combination.
Adaptive training was originally derived for maximum likelihood
training. However discriminative training1 has also been exam-
ined within this framework [3, 4]. For some situations, such as
conversational telephone speech, no supervised adaptation data is
available, thus the correct transcript to discriminatively train the
test set transformation is not possible. To maintain a consistent
criterion in transform estimation in testing adaptation, simplified
discriminative adaptive training is normally used where only the
canonical model parameters are discriminatively updated with the
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1The adaptive discriminative training using MLLR in this paper is im-
plemented using the MPE criterion [2] rather than the Maximum Mutual
Information criterion in [3].

ML-estimated transforms fixed [4]. This is the approach adopted
for the discriminative adaptive training discussed in this paper.

Adaptive training may be described within a Bayesian frame-
work [5, 6]. Distributions over the canonical model parameters
and transform parameters are now estimated. The likelihood of the
observation sequence is then obtained by marginalising out over
these canonical model and transform distributions. Using stan-
dard techniques to control the complexity of the canonical model
and number of transforms, the usual point estimate adaptive train-
ing can be justified within this Bayesian framework [6]. However
during recognition, or inference, there is usually no control over
the amount of data available. It is therefore preferable to use a
full Bayesian approach for inference. This is the scenario consid-
ered in this paper. Point estimates will be used for the canoni-
cal model parameters and distributions for the transform parame-
ters. As exact inference using this framework is intractable, lower
bound approximations have previously been investigated for batch
adaptation and adaptively trained systems [6]. Two classes of ap-
proximation have been examined. The first is based on point esti-
mates, using either Maximum Likelihood (ML) [7] or Maximum
a Posteriori (MAP) [8]. The second is based on variational Bayes
(VB) [9, 10, 6] with transform distributions.

For some situations, rather than all the data being available
in one block, as in batch adaptation, the data becomes available
causally. Using incremental, or on-line, adaptation the transform
may be updated as each utterance becomes available and recog-
nition results produced causally. This paper investigates lower
bound based Bayesian techniques for incremental adaptation. Var-
ious information propagation strategies between utterances are de-
scribed and their effect on computational cost discussed. An ef-
ficient incremental Bayesian adaptation framework with recursive
transform distribution update formulae is established. This is then
applied to both ML and Minimum Phone Error (MPE) trained
models [2]. Results are presented on a Conversational Telephone
Speech (CTS) task.

2. ADAPTATION USING BAYESIAN INFERENCE

The aim of inference is to find the hypothesis, Ĥ, satisfying

Ĥ = arg max
H

p(O|H)P (H) (1)

for observation sequence O where P (H) is the language model
and p(O|H) is the acoustic likelihood. HMMs with Gaussian mix-
ture model (GMM) as the state output distributions are commonly
used as the underlying acoustic model to calculate p(O|H). Al-
ternatively in adaptive training HMMs are used to model the ob-
servation given the transform for that homogeneous data block,
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p(O|H, T ). If there is no adaptation data available then the likeli-
hood is computed as [6]

p(O|H) =

Z
T

p(O|H, T )p(T ) dT (2)

where O belongs to a single homogeneous block and p(T ) is the
prior transform distribution. If adaptation data is available then the
posterior transform distribution given the adaptation data is used
in equation 2 rather than the prior, this is sometimes referred to
as posterior adaptation [5]. As the amount of adaptation data in-
creases the posterior distribution may be approximated by a point
estimate based on either the ML or MAP transform estimate.

Direct calculation of equation 2 is intractable with HMMs, so
various forms of approximation are used. In this work a lower
bound approximation, based on Jensen’s inequality, is used.

log p(O|H) ≥

fi
log

p(O, θ|T ,H)p(T )

q(θ, T )

fl
q(θ,T )

(3)

where < f(x) >q(x) denotes the expectation of function f(x)
with respect to the distribution of q(x) and q(θ, T ) is a joint dis-
tribution over the Gaussian component sequence θ and transform
parameters T . The above becomes equality when

q(θ, T ) = P (θ|O,H, T )p(T |O,H) (4)

Using equation 4 is impractical, so alternative approximate forms
of q(θ, T ) are required. The tightness of the bound is dependent
on the precise form of the approximation used. There are two
forms commonly used:

1. Point Estimates [8, 6]: With sufficient adaptation data the
transform distribution can be approximated by a Dirac delta func-
tion

q(θ, T ) = P (θ|O,H, T̂ )δ(T − T̂ ) (5)

The point estimate value, T̂ , may be obtained using ML or MAP
estimates. Substituting this point estimate into equation 3 yields a
lower bound involving the entropy of the delta function.

log p(O|H) ≥ log p(O|H, T̂k) + log p(T̂k) + H(δ(T − T̂k)) (6)

where H() is the entropy. k is used to indicate the iteration num-
ber as the lower bound can be made tighter by iteratively refining
the component sequence posterior distribution (equivalent to the
standard EM training). As the entropy of a delta function is −∞,
this yields a very loose bound. However since only the rank order-
ing is of interest in inference and the entropy of the delta function
is the same for all values, the entropy term may be ignored. If
a non-informative prior is used, the MAP estimate becomes the
Maximum Likelihood (ML) estimate. The advantage of point es-
timates is low computational cost and the compatibility with stan-
dard training/decoding algorithms. However, it may not be robust,
even for MAP, for very limited adaptation data case.
2. Variational Bayes (VB) [9, 10, 6]: Rather than using a point
estimate a distribution over the transform parameters may be used.
In the VB approximation the component sequence and transform
distributions are assumed to be conditionally independent

q(θ, T ) = q(θ|O,H)q(T |O,H) (7)

The VBEM algorithm [9, 6] can be used to optimise the lower
bound, equation 3 with respect to the two variational distributions

rather than particular parameter values. This is an iterative process
resulting in an optimal transform distribution on which the lower-
bound ordering can be based. The resultant lower bound after K

iterations can be expressed as

log p(O|H) ≥ logZΘ(O,H) −

Z
T

qK(T ) log
qK(T )

p(T )
dT (8)

where qK(T ) is the compact notation for qK(T |O,H). ZΘ(O,H)
is the normalisation term for q(θ|O,H) and can be calculated
in a similar fashion to p(O|H, T̂K) in equation 6 except that the
pseudo distribution is used rather than the standard Gaussian distri-
bution [6]. As VB employs real distributions, it performs more ro-
bustly than the point estimate with very limited adaptation data [6].

For both the point and the VB approximations, the lower bound
rank ordering, equation 8 or 6, is assumed to give the same or-
dering as the actual likelihood. These lower approximations will
be used for inference. For the point estimates, either MAP or
ML, there is an interesting difference between using this lower
bound approximation and standard unsupervised adaptation. For
the lower bound approximation a transform, and resultant lower
bound value, is estimated for each hypothesis. The tightness of
the bound is then increased for each of the hypothesis. In standard
unsupervised adaptation only the 1-best hypothesis is used to es-
timate the transform, which is then used to rescore the data. This
introduces an inherent bias towards the 1-best solution.

An alternative form of approximation to equation 2 is the Frame-
Independent (FI) [5], also referred to as the Bayesian predictive
distribution [11]. Here the prior distribution is directly applied
to marginalise each component distribution independently. This
effectively alters the form of dynamic Bayesian network being
used [5]. This has the advantage over the lower-bound approaches
that the standard decoding schemes may be used.

3. INCREMENTAL BAYESIAN ADAPTATION

The Bayesian adaptation discussed in section 2 describes decod-
ing in a batch mode. All test data are assumed to be available for
decoding in a single block. However, in some real world appli-
cations test data often become available gradually. To deal with
this issue incremental adaptation is often used. Here informa-
tion from the previous utterances are propagated to the current
utterance. The current utterance is then decoded and the result
output. This section will discuss incremental adaptation within a
Bayesian framework. The key issue is what information to prop-
agate and how to use it. For incremental adaptation, each ho-
mogeneous data block is assumed to be split into U utterances,
O ≡ O1:U ≡ {O1, · · · ,OU}. Information is propagated to the
U th utterance from the previous U − 1 utterances. The hypothesis
for all the data, H consists of a set of hypotheses for utterances
within it, H1:U ≡ {H1, . . . ,HU}. Various levels of information
can be propagated.

1. No information: The lower bound for all U utterances is op-
timised. This involves rescoring all U blocks, obtaining a new
Ĥ1:U . Thus the U th utterance may change the “best” hypothesis
for the preceding utterances. This approach breaks the standard
causal aspects of incremental adaptation and is highly computa-
tionally expensive.
2. Inferred hypothesis sequence: If the causal constraint is en-
forced, then the best hypothesis for the previous U − 1 utterances
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is fixed as Ĥ1:U−1. The optimisation of the bound is then only
based on possible hypotheses for the U th block.

q(θ|O,H) = q(θ|O, Ĥ1:U−1,HU ) (9)

q(T |O,H) = q(T |O, Ĥ1:U−1,HU ) (10)

In this configuration there is a choice of initial transform distribu-
tion to use. The transform prior, p(T ), can be used to initialise the
VBEM process. Alternatively, the distribution from the previous
utterances may be used. Thus

q0(T |O, Ĥ1:U−1,HU ) = qK(T |O1:U−1, Ĥ1:U−1) (11)

where K is the number of VBEM iterations used. Inference only
involves possible hypotheses for the U th utterance. The VBEM
algorithm remains unchanged except that O1:U−1 only needs to
be re-aligned against Ĥ1:U−1, rather than all possibilities.
3. Posterior sequence distribution and hypotheses: Just prop-
agating the hypotheses still requires the posterior component se-
quence distribution for all U utterances to be computed. This pos-
terior may also be fixed and propagated to the next utterance. Thus
equation 9 becomes

q(θ|O,H) = q(θU |OU ,HU )

U−1Y
u=1

qK(θu|Ou, Ĥu) (12)

The previous U − 1 utterances do not need to be re-aligned. Only
q(θU |OU ,HU ) needs to be computed, i.e., only the sufficient
statistics of the U th utterance need to be accumulated. This is
the most efficient form and the one used in this paper.

Using the information propagation strategy 3, an efficient, modi-
fied version of the VBEM algorithm described in [6] can be de-
rived. Initially only the VB approximation is considered.

1. Initialisation: set k = 1, the initial transform distribution is
given by 11. For the first utterance, set q0(T ) = p(T ).
2. VBE step: qk(θU |OU ,HU ), and corresponding statistics, are
calculated using the forward backward algorithm with Gaussian
components adapted by the transform distribution of the previous
iteration, qk−1(T |O1:U , Ĥ1:U−1,HU ), similar to [6].
3. VBM step: The optimal transform distribution can be shown as

log qk(T |O1:U , Ĥ1:U−1,HU ) ∝

log p(T ) + 〈log p(OU , θU |T ,HU )〉
qk(θU |OU ,HU )

+
PU−1

u=1

D
log p(Ou, θu|T , Ĥu)

E
qK(θu|Ou,Ĥu)

(13)

The sufficient statistics are a summation of those of the current
utterance and those of the previous U − 1 utterances, which are
propagated and do not need to be re-calculated. This recursive
formulae significantly reduces the computation cost.
4. k = k + 1. Goto 3 until k = K.

Having obtained the optimal transform distribution with the above
incremental VBEM algorithm, the ranking for inference of the U th

utterance can be done using the VB lower bound in equation 8. The
normalisation term can also be efficiently calculated using

ZΘ(O,H) = ZΘ(OU ,HU )

U−1Y
u=1

ZΘ(Ou, Ĥu) (14)

Note that that a normalisation term must be calculated for each
possible hypothesis HU .

With the point estimate approximations, a similar incremen-
tal EM algorithm and inference process can be derived. The main
difference is that the transform estimate, rather than the distribu-
tion, is propagated. The initial estimate for the first utterance in
this case can be set to the mean of p(T ) for MAP and an identity
transform for ML.

4. EXPERIMENTAL RESULTS

The performance of the incremental Bayesian adaptation was eval-
uated on a large vocabulary speech recognition CTS task. The
training data set consists of 5446 speakers, about 295 hours of
data. The performance was evaluated on the 2003 evaluation test
dataset, eval03, consisting of 144 speakers, about 6 hours of
data. Standard Speaker Independent (SI) ML and MPE trained
decision-tree state-clustered triphone models with 16 components
per state were built using a 39-dimensional PLP-based frontend
with HLDA and VTLN. For more details of the training configura-
tion see [6]. Speaker adaptively trained (SAT), both ML and MPE
based, systems were also built using speech and silence MLLR
transforms. The priors for these transforms were estimated sep-
arately. As previously mentioned, for the MPE-SAT system a
simplified training framework using the ML-transforms was run.
Since the inference in sections 2 and 3 requires the whole utter-
ance hypothesis to be used, N-best rescoring was employed. Two
150-best lists were generated for ML and MPE systems from cor-
responding SI models. All results shown are based on the two
150-best lists, though there was little performance difference when
spot-checks were run with a 300-best list. During adaptation, 1 it-
eration (K = 2) is employed for updating the transform estimate
or distribution, which is then used to compute the lower bound. For
these experiments a homogeneous block was a conversation side,
average length 153.75 seconds, with an average utterance length
of 3.13 seconds.

Bayesian ML Train MPE Train
Approx. SI SAT SI SAT

— 32.83 — 29.20 —
FI —- 32.90 — 29.74

ML 35.54 35.16 — 32.27
MAP 32.16 31.76 — 28.80
VB 31.77 31.50 — 28.63

Table 1. Utterance level adaptation of ML-SI, ML-SAT and MPE-
SAT systems with single Gaussian prior transform distribution

As a baseline for the incremental adaptation, table 1 shows the
performance of ML and MPE trained SI and SAT model sets where
the adaptation was performed on a per-utterance basis (similar to
the ML results in [6]). The FI approximation [5] shows similar
performance for the ML SAT system as the ML SI, since only a
single component transform prior is being used. However for the
MPE system the use of FI approximation is about 0.6% absolute
worse than the SI MPE system. This is felt to be due calculating
the transform prior using ML. Thus though the canonical model
parameters are discriminatively trained, the discriminative power
is reduced by applying an ML based transform prior. For this rea-
son the MPE-SI system was not evaluated for configurations using
transform priors. This issue also reduces the gains of the MPE-
SAT VB system over the baseline MPE-SI system, about 0.5%
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absolute, compared to 1.3% absolute of the ML-SAT VB system
over the baseline ML-SI system. As an additional contrast, stan-
dard MAP adaptation (using the 1-best hypothesis) gave an error
rate of 32.0% WER. This is about 0.2% worse than the lower-
bound Bayesian approximation here. This illustrates the bias that
results from using a single hypothesis to estimate the transforms
for all the N-best rescoring, as discussed in section 2.
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Fig. 1. Incremental adaptation cumulative WER (%) of different
number of utterances on ML-SAT system

To investigate performance of different Bayesian approxima-
tions for incremental adaptation, cumulative WERs of the first 30
utterances of the ML-SAT system are plotted in figure 1. The SI
line in figure 1 refers to the non-adapted SI performance. As ex-
pected, for a limited number of utterances the order of performance
is similar to that shown in table 1. The VB approximation shows
the best performance. As the number of utterances increases the
difference between the VB and MAP approximations become far
smaller.

Bayesian ML Train MPE Train
Approx SI SAT SI SAT

— 32.83 — 29.20 —
ML+thresh 31.23 — 27.81 —

ML 32.23 31.84 — 28.72
MAP 30.92 30.40 — 27.47
VB 30.88 30.31 — 27.44

Table 2. Incremental adaptation of ML-SI, ML-SAT and MPE-
SAT systems with single Gaussian transform distribution

As a baseline for Bayesian incremental adaptation, standard
incremental adaptation using an occupancy threshold to decide
whether a transform can be robustly estimated is shown in table 2
(ML+thresh). As expected incremental adaptation shows gains
over standard SI decoding. The final results after a whole conver-
sation side for various Bayesian approximations are also shown in
table 2. For the ML trained systems, the best performance was
obtained using the VB approximation with a SAT model set. This
gave an gain of 0.9% absolute over the baseline system. For MPE
training the MPE-SAT system also gave gains over the standard
adapted MPE-SI system, though the gain was less, 0.4%, than for

the ML systems. The ML prior will again have affected the perfor-
mance. As expected for both ML and MPE trained systems MAP
and VB performed about the same, as after a few utterances the
MAP point estimate is a reasonable approximation to the trans-
form distribution.

5. CONCLUSION

This paper has described an incremental Bayesian adaptation frame-
work. A lower bound approximation is used to make the inference
practical and both point estimates and variational Bayes approx-
imations are discussed. Various forms of incremental adaptation
are described, where different levels of information are propagated
from one utterance to another. Due to its efficiency a scheme where
both the hypotheses and component posterior distributions from
the previous utterances are propagated was implemented. Using
this framework it is possible to use adaptively trained systems for
incremental adaptation, even when the utterance lengths are very
short. These adaptively trained systems showed gains over stan-
dard SI systems for a CTS incremental adaptation task. In addi-
tion to ML trained systems, MPE trained systems were examined.
Again adaptively trained systems showed gains over standard SI
systems, though the gains were smaller. This is felt to be due to
the use of an ML estimated transform prior. Discriminative forms
of transform prior will be investigated in future work.

6. REFERENCES

[1] T. Anastasakos, J. Mcdonough, R. Schwartz, and J. Makhoul,
“A compact model for speaker adaptive training,” in Proc.
ICSLP, 1996, pp. 1137–1140.

[2] D. Povey and P. C. Woodland, “Minimum phone error and
I-smoothing for improved discriminative training,” in Proc.
ICASSP, 2002, Orlando.

[3] T. Schaaf J. McDonough and A. Waibel, “On maximum mu-
tual information speaker-adapted training,” in Proc. ICASSP,
Florida, USA, May, 2002.

[4] L. Wang and P. C. Woodland, “Discriminative adaptive train-
ing using the MPE criterion,” in Proc. ASRU, 2003.

[5] M. J. F. Gales, “Acoustic factorization,” in Proc. ASRU,
2001.

[6] K. Yu and M. J. F. Gales, “Bayesian adaptation and adap-
tively trained systems,” in Proc. ASRU, 2005.

[7] C. J. Leggetter and P. C. Woodland, “Speaker adaptation of
continuous sensity HMMs using multivariate linear regres-
sion,” ICSLP, pp. 451–454, 1994.

[8] W. Chou, “Maximum a-posterior linear regression with el-
liptical symmetric matrix variate priors,” Proc. ICASSP, pp.
1–4, 1999.

[9] M. J. Beal, Variational Algorithms for Approximate Bayesian
Inference, Ph.D. thesis, University College London, 2003.

[10] S. Watanabe and A. Nakamura, “Acoustic model adaptation
based on coarse/fine training of transfer vectors and its appli-
cation to a speaker adaptation task,” in Proc. ISLP, 2004.

[11] H. Jiang, K. Hirose, and Q. Huo, “Robust speech recogni-
tion based on a Bayesian prediction approach,” IEEE trans-
actions on speech and audio processing, vol. 7, pp. 426–440,
1999.

I  220


