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ABSTRACT

To date, systems for the identification of spoken languages 
have normally used magnitude-based parameterization 
methods such as the MFCC and PLP. This paper 
investigates the use of the recently proposed modified group 
delay function (MODGDF) coefficients in combination with 
traditional magnitude-based features in a Gaussian Mixture 
Model (GMM) based system. We also examine the 
application of feature warping to magnitude-based features 
and the MODGDF and find that it can offer a significant 
cumulative improvement. We find that the addition of a 
modified regression-based Shifted Delta Cepstrum (SDC) 
further improves system performance beyond that obtained 
by a more standard SDC configuration. The combination of 
PLP, feature warping and the proposed regression-based 
SDC achieved an accuracy of 88.4% in tests on 10 
languages in the OGI TS Corpus, which compares very 
favourably with alternative language identification systems 
reported in the literature. 

1. INTRODUCTION 

Research into acoustic language identification has recently 
gained momentum after an acoustic based system out-
performed more traditionally accepted phonetic systems in 
the NIST 2003 Evaluation task [1]. This revived efficacy of 
acoustic language identification systems stems largely from 
the extension of the traditional delta and acceleration 
cepstrum to the so-called Shifted Delta Cepstrum (SDC) and 
the use of more efficient Gaussian Mixture Model (GMM) 
adaptation algorithms for training and testing [2]. Systems 
employing these methods provide a fast and effective means 
of language identification. However, while acoustic 
language identification systems have improved markedly in 
recent years, the search continues for the most effective 
front-end processing methods for distinguishing between 
spoken languages. 

Feature warping was proposed for use in language 
identification by the current authors and has been shown to 
provide significant improvements to language identification 

performance [3]. Recently used for speaker identification [4] 
and for robust speech recognition [5], feature warping maps 
the short-term distribution of each feature stream to a 
standardized distribution. It provides improved compatibility 
between training and test data, reduces channel mismatch 
and noise and provides greater compatibility with a GMM 
back-end. 

Traditionally, language identification systems have only 
included features derived from the magnitude of the 
frequency spectrum, such as the MFCC and PLP. While 
some attention has been paid to the inclusion of information 
on the prosodic features in the signal, such as the pitch and 
intensity, very little attention has been paid to the inclusion 
of information relating to the phase of the frequency 
spectrum. It is well-known that quality reconstruction of 
speech signals is only possible from the magnitude spectrum 
if a reliable estimate of the phase is included. Recent 
research has also shown that human auditory perception may 
rely on both amplitude and frequency modulation for the 
comprehension of sounds [6]. We hypothesize that the phase 
carries important information about the speech signal that 
can be exploited to distinguish between languages. 

Coefficients based on a modified calculation of the 
group delay of the phase spectrum have recently been 
proposed for language identification [7]. These coefficients 
have been shown to offer small improvements in language 
identification performance, with further small improvements 
obtained when they are combined with the MFCC using late 
fusion [7]. 

This paper makes a detailed comparison of the effects 
of feature warping and the SDC on system performance 
when applied to both magnitude (PLP or MFCC) and phase-
based coefficients (MODGDF). We also propose a modified 
method for calculating the SDC using a regression-based 
calculation of the first order delta cepstrum. 

2. FRONT-END TECHNIQUES 

2.1 Feature Warping 

Feature warping, also known in the image processing 
literature as histogram equalization and in the speech 
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processing literature as cumulative distribution mapping, has 
been previously shown by the current authors to produce 
significant improvements in language identification accuracy 
[3]. The technique maps each feature vector stream to a 
standardized distribution over a specified time interval.  
Speech recognition [5], speaker verification [4] and 
language identification [3] tasks using this technique have 
been found to exhibit superior performance to those using 
other methods including Cepstral Mean Subtraction (CMS) 
and mean and variance normalization.  

Previous research by the current authors has also shown 
that feature warping is best applied to the MFCC or PLP 
only, providing no benefits when applied to the delta and 
acceleration or shifted delta cepstrum [3]. While feature 
warping can be applied using any standard probability 
distribution, the best results are obtained when a Gaussian 
distribution is used [3]. 

The methodology for performing the feature warping in 
this paper is the same as that described in [3] and [4]. A 
sliding rectangular window of N samples is applied, with the 
new warped value calculated for the cepstral feature in the 
centre of the window as shown in Figure 1, where R is the 
new index of the centre value when the window is sorted 
into ascending order and norminv is the inverse of the 
normal cumulative distribution function. 
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Fig. 1. Feature warping transformation

2.2 Modified Group Delay Coefficients 

Traditionally, language and speaker recognition tasks use 
feature vectors containing cepstra derived from the 
magnitude of the Fourier transform such as the MFCC and 
the PLP. Recently Murthy et al. have proposed using 
coefficients based on the phase information via a modified 
calculation of the group delay function, their so-called 
MODGDF [7],[9]. They recently showed that the MODGDF 
could produce results comparable with the MFCC for 
language identification and that a small improvement could 
be obtained when the MODGDF were combined with the 
MFCC using late fusion [7]. However their results only 
considered the coefficients when used without further 
processing or with traditional delta and acceleration cepstra 
appended. No experiments have been published to date that 
consider the combination of the MODGDF with either the 
shifted delta cepstrum (SDC) or feature warping.  

According to the methodology described in [7], the 
MODGDF coefficients are calculated as follows: A 

smoothed estimate of the group delay function is calculated 
from the speech signal x[n] according to 

γω

ωωωω
ωτ

2)(

)()()()(
)(

S

XYYX IIRR +
= ,    (1) 

where X(ω) and Y(ω) are the Fourier transforms of x[n] and 
nx[n] respectively and the R and I subscripts denote the real 
and imaginary parts respectively. S(ω) is a cepstrally 
smoothed version of |X(ω)| and γ ∈ [0, 1] is a constant 
introduced to reduce the spiky nature of the formants. The 
final modified group delay coefficients are then calculated 
by taking a DCT of τm(ω), which is given by 
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Here α ∈ [0, 1] is another constant introduced to reduce the 
spiky nature of the formants. 

2.3 Shifted Delta Cepstrum 

Traditionally, language and speaker recognition tasks use 
feature vectors containing cepstra and delta and acceleration 
cepstra. Recently, however, the Shifted Delta Cepstrum 
(SDC) has been found to exhibit superior performance to the 
delta and acceleration cepstra in a number of language 
identification studies [2],[3] due to its ability to incorporate 
additional temporal information, spanning multiple frames, 
into the feature vector. 

The SDC is obtained by concatenating the first order 
delta cepstra computed across multiple frames of speech. 
Four parameters (N, D, P, and k) specify the standard 
computation of the SDCs as follows [8]: N cepstral 
coefficients are computed each frame, then for each of these 
cepstral streams, the final vector at time t is given by the 
concatenation of the ∆c(t+iP) for all 0 ≤  i < k , where 

)()()( DiPtcDiPtciPtc −+−++=+∆ .    (3) 

For some of the experiments in this paper, a more robust 
regression-based SDC calculation is proposed in place of 
(3), based on a method originally reported by Furui [11] for 
calculating the first order delta MFCC values. This has not 
previously been used for SDC calculation but is expected to 
provide a smoother and more robust estimate of the local 
slope. The same four parameters specify the computation, 
but the final vector at time t is given by the concatenation of 
the ∆c(t+iP) for all 0 ≤  i < k, where 
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3. PROPOSED LANGUAGE IDENTIFICATION 
SYSTEM 

3.1 Feature Extraction 

The complete proposed feature extraction configuration is 
shown in Figure 3. The magnitude-based coefficients (PLP 
or MFCC) and MODGDF coefficients were calculated from 
the input speech. In place of the late fusion method [7] for 
combining magnitude and phase coefficients, we 
concatenated them to form a single feature vector. Feature 
warping was then performed using a 3 second sliding 
window and a Gaussian distribution.  The SDC were 
calculated from the un-warped features using the regression 
based method in (4).  A parameter configuration of N-3-3-7 
was used, where N is the total length of each feature. The 
SDC were then concatenated with the warped feature vectors 
to form the final features. 

Fig. 3. Proposed feature extraction procedure 

3.2 Classification 

The back-end used for all experiments in this study was a 
GMM-based acoustic language identification (LID) system 
identical to that used in [3].  A single GMM was trained on 
data from all languages using the expectation maximization 
algorithm. Then for each of the 10 languages, a separate 
GMM was adapted using data from that language only. 
Testing was performed using the fast scoring technique 
described in [10], considering only the five most significant 
components. The chosen language was selected based on the 
adapted language GMM that produced the highest average 
log likelihood score. All tests were conducted on 20-second 
speech samples. 

4. EXPERIMENTS 

4.1 Corpus 

All the experiments described in this paper were conducted 
on the 1994 OGI Multi-language Telephone Speech Corpus 
using the data sets defined for the National Institute of 
Science and Technology (NIST) 1994 Evaluation task. All 
used closed-choice tests on 10 languages. The training and 
development sets were both used to train the LID system and 
the evaluation set was used for evaluation testing.

4.2 Results 

Investigations were conducted to compare the performance 
of the MFCC, PLP and MODGDF individually, combined 
with delta and acceleration coefficients, feature warped, 
concatenated with the standard 7-1-3-7 configuration of the 
SDC (calculated using equation 3) and concatenated with the 
7-3-3-7 regression based SDC (calculated using equation 4).  
All these experiments used GMMs with 256 mixtures. 

The results are given in Table 1, and demonstrate that 
feature warping improves system performance in all cases, 
and substantially so in many cases. However it is shown to 
be less beneficial when applied to the MODGDF, providing 
an average relative improvement in accuracy of only 3.3%, 
compared to an average relative improvement of 54.7% 
when applied to the PLP and 29.6% when applied to the 
MFCC. 

The results also show that while the MODGDF achieve
comparable performance with the MFCC and PLP in 
experiments where either just the 7 coefficients were used or 
where 12 coefficients and the delta and acceleration cepstra 
were used, they performed relatively poorly when combined 
with the SDC and feature warping. The poorer performance 
when combined with the SDC is likely to be because the 
SDC configuration that performs best for the MFCC and 
PLP is not the optimal configuration for the MODGDF. 

A significant improvement is found to be obtained in 
most cases by using the 7-3-3-7 proposed regression based 
method for calculating the SDC in equation (4) rather than 
the commonly used 7-1-3-7 simple subtraction method of 
equation (3) [2],[3].  

Table 1. Accuracy comparison of MFCC, PLP and MODGDF features alone, with feature warping and with the SDC. The 
effect of the proposed regression-based SDC on warped MFCCs is shown in bold. 

Without Feature Warping  (% Correct) With Feature Warping (% Correct) 
MFCC PLP MODGDF MFCC PLP MODGDF 

7 Coefficients only 23.0 27.8 24.9 - - - 
12 Coefficients with Delta and 
Acceleration Cepstra 

41.9 31.7 37.9 60.8 64.4 38.3 

7-1-3-7 SDC (calculated using eq. 3) 55.9 56.0 - 73.4 76.4 - 
7-3-3-7 SDC (calculated using eq. 4) 71.9 61.4 50.7 80.9 76.4 53.5 

Calculate 
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Calculate 
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Calculate 
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Calculate 
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An average relative improvement of 12.1% is obtained by 
using this former method over the latter. 

4.3 Combining Magnitude and Phase features 

In these experiments, the MODGDF coefficients were 
concatenated with the magnitude cepstra (MFCC and PLP) 
to form a single feature vector.  Feature warping was 
performed in all tests and the 7(14)-3-3-7 regression-based 
SDC (calculated according to equation (4)) was appended. 
256 order GMMs were used in all tests. The results yielded 
accuracies of 69.2% for MFCC+MODGDF and 63.4% for 
PLP+MODGDF. Given that the concatenated features 
contain additional information, one reason for the poorer 
performance in these experiments may be because 256 
mixtures are not sufficient to accurately model the increased 
dimensionality of the input feature vectors. 

4.4 Final Configuration 

In order to arrive at an optimum configuration for language 
identification based upon the preceding results, the number 
of mixtures in the GMMs was increased from 256 to 1024 
mixture components for three system configurations. Given 
the poor performance of the MODGDF features in the 
preceding tests, they were not included here. The results are 
shown in Table 2. Increasing the number of mixtures 
resulted in improved performance in all cases and an 
average relative improvement in performance of 6.9%. The 
best performing system achieved a final accuracy of 88.4% 
using PLPs with feature warping and the proposed 
regression-based SDC with 8-3-3-7 configuration. 

Table 2. Language identification accuracies (% correct) for 
optimized configurations using higher order GMMs 

  256 
Mixtures 

1024 
Mixtures 

12 MFCCs with Delta and 
Acceleration cepstra 

60.9 64.1 

PLP with 7-1-3-7 standard (eq. (3)) 
SDC and feature warping 

76.4 83.6 

PLP with 8-3-3-7 regression (eq. 
(4)) SDC and feature warping 

83.4 88.4 

5. CONCLUSION 

The results in this paper have shown that feature warping 
offers improvements to both magnitude and phase-based 
front-end feature vectors. The proposed regression-based 
method for calculating the SDC achieves an average relative 
improvement in accuracy of 12.1% over the standard SDC 
calculation for the OGI TS corpus. The MODGDF 
coefficients were found to produce comparable results to the 
MFCC and PLP when used individually, but performed 

relatively poorly when concatenated with MFCC or  
PLP coefficients. Our experiments confirm that magnitude-
based features offer the best accuracy for language 
identification. The best performing system used the PLP 
with feature warping and an 8-3-3-7 regression-based SDC 
to achieve an accuracy of 88.4% in closed choice tests 
between 10 languages on the OGI TS Corpus. 

Future work will conduct a more thorough investigation 
of the optimal SDC configuration and feature warping 
distribution to use with the MODGDF.
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