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ABSTRACT

This paper concentrates on PRLM (phoneme recognizer followed
by language model) approach to language recognition. It elabo-

rates on our prior work concerning the quality of phoneme recog-

nition and amounts of training data for phoneme recognizer train-

ing. It reports improvements brought to our PRLM system by better
phoneme recognition and Witten-Bell discounting in LM-modeling.

The paper then concentrates on the use of phoneme lattices and

anti-models. Training and scoring on phoneme lattices brought sig-

nificant improvement in language recognition accuracy. The anti-
models are simple, yet powerful technique to improve the discrim-

ination between target and non-target languages. All results are

reported on standard NIST 2003 data; comparison with other pub-

lished results is favorable to our system.

1. INTRODUCTION

Automatic language identification (LID) has increasing importance
among speech processing applications. It can be used to route

calls to human operators (commerce, emergency), pre-select suit-

able speech recognition system (information systems) and has many

uses in security applications.
The goal for Language Identification is to determine the lan-

guage a particular speech segment was spoken. The algorithms for

LID can be roughly divided (see for example [1]) into two groups. In

phonotactic modeling, a tokenizer transcribes the input speech into
phonemes and the scoring is performed on phoneme strings or lat-

tices. This approach is mostly referred to as PRLM (Phoneme recog-

nizer followed by language model) or PPRLM (Parallel PRLM). In

acoustic modeling, the input features are modeled directly by Gaus-
sian mixture models (GMM), artificial neural networks, support vec-

tor machines, or other techniques [2].

This paper concentrates on the phonotactic approach. In [3] we

have claimed that the quality of PRLM and PPRLM heavily de-

pended on the quality of phoneme recognizer and on the amount
of available training data. We use high-quality phoneme recog-

nizer based on so called LC-RC FeatureNet approach and in [3],

we have presented phoneme recognizers trained on 4 languages

from SpeechDat-East database. Although none of these languages
is equivalent to any of the target languages in NIST 2003 LID data,

the simple fact that these databases contain 10×more data than OGI-
Stories (usually used to train tokenizers in LID) greatly improves the

LID accuracy.
Here, we first report further improvement of this system by slight

changes in the phoneme recognizer. The main focus is however on
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the following points:

• using phoneme lattice rather than strings for both training and
scoring by phonotactic models. This approach was pioneered
by LIMSI [4] with good results, and our results with phoneme

lattices (though our approach was simpler) were also very sat-

isfactory.

• use of anti-models: phonotactic models trained on mis-
recognized segments that should help to discriminate between

target and non-target language. Similar approach was used

by SRI in large vocabulary continuous speech recognition

(LVCSR) [5] to compensate for hypothesis that are acousti-
cally confusable with the correct transcriptions, we have how-

ever not seen any use of such technique in LID.

The paper is organized as follows: section 2 reviews the architecture
of our PRLM system. The following section 3 concentrates on the

experimental data and baseline results. Section 4 reports the results

obtained with phoneme lattices and section 5 contains the core of

the paper - investigation into anti-models. The paper is concluded in
section 6.

2. SYSTEM DESCRIPTION

2.1. Phoneme recognizer - LCRC FeatureNet

Good phoneme recognizer is the most important part of an accu-

rate PRLM LID system. We use a hybrid system based on Neural

Networks (NN). The feature extraction makes use of long temporal

context, known as TRAPs (temporal patterns) [7]. First, Mel fil-
ter bank energies are obtained in conventional way. After sentence

mean normalization in each band, temporal evolution of critical band

spectral densities are taken around each frame. Based on our pre-

vious work in phoneme recognition [8], the context of 31 frames
(310 ms) around the current frame was selected. This context is split

into 2 halves: Left and Right Contexts (hence the name “LCRC”).

This allows for more precise modeling of the whole trajectory while

limiting the size of the model (number of weights in the NN) and
reducing the amount of necessary training data [8]. Both parts are

processed by discrete cosine transform to de-correlate and reduce

dimensionality. Two NNs are trained to produce phoneme posterior

probabilities for both context parts. Third NN functions as a merger
and produces final set of phoneme-state posterior probabilities (Fig-

ure 1).1

A simple Viterbi decoder2 without any language model con-

straints processes output of the merger and produces string of

1All nets are trained using QuickNet from ICSI
http://www.icsi.berkeley.edu/Speech/qn.html
2SVite, which is part of STK-toolkit developed at Brno University of

Technology: http://www.fit.vutbr.cz/speech/sw/stk.html
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Fig. 1. PRLM system based on phoneme recognizer with split temporal context

Arabic (Egyptian) Japanese Farsi

French (Canadian French) German Hindi

English (American) Korean Mandarin

Spanish (Latin American) Tamil Vietnamese

Table 1. The twelve target languages

phonemes. In [8], we have shown that this system outperforms

phoneme recognizers with GMM/HMM modeling.

2.2. Phonotactic model - trigrams

Smoothed trigram language model was used to capture phonotactic

statistics of each language. It was created by passing training speech

of all target languages through phoneme recognizer and counting

trigrams for each language separately. Phoneme insertion penalty
(PIP) in the decoder was tuned on 1996 NIST data with the best

LID performance as criterion. Previously, the problem of unseen

trigrams was solved by replacing them by a constant, which had to

be experimentally tuned. The current version uses standard Witten-
Bell discounting [10].3

2.3. Recognition

During recognition, the test sentence is passed through the phoneme

recognizer. The resulting string of phonemes is processed by all
phonotactic models, and for each, the likelihoods of all trigrams are

multiplied. Likelihoods are normalized over all languages by divid-

ing the score by a sum of all scores and by the number of phonemes

in utterance. Finally we have scores for all target languages. Our
previous paper [3] discusses also the merging of scores of several

PRLM recognizers into one (PPRLM), here, we concentrate on the

use of just one phoneme recognizer.

2.4. Evaluation

The evaluation is done according to NIST [12] per-language, consid-
ering each system is a language detector rather than a recognizer. A
standard detection error trade-off (DET) curve is evaluated as a plot

of probability of false alarms against the probability of misses with

the detection threshold as the parameter and equal priors for target
and non-target languages. Equal error rate (EER) is the point where

these probabilities are equal.

3implemented in SRI LM toolkit [9]
http://www.speech.sri.com/projects/srilm/

3. DATA AND BASELINE RESULTS

3.1. Databases

All data used for the experiments were recorded over telephone lines.

The phoneme recognizer used throughout this paper was
trained on Hungarian SpeechDat-East database [11] which gener-

ated the best individual PRLM results in our previous work [3]. Only

phonetically balanced items are used for the training of phoneme rec-

ognizer, the sizes of training, test and cross-validation (CV) sets are
7.86, 1.97 and 0.77 hours respectively. Hungarian phonetic alphabet

contains 62 phonemes.

Phonotactic models were trained on the CallFriend Corpus
[13]. Each of 12 target languages (Table 1) contains 20 complete

half-hour conversations.

Test Data comes from NIST 2003 LID evaluation [12]. This
data set consists of 80 segments with durations of 3, 10 and 30 sec-

ond in each of 12 target languages (Table 1). All results in this paper

(except for the final Table 4) are reported for 30s segments. This

data comes from conversations collected for the CallFriend Cor-
pus but not included in its publicly released version. In addition,

there are four additional sets of 80 segments of each duration se-

lected from other LDC conversational speech sources, namely Rus-

sian, Japanese, English and cellular English.

3.2. Baseline results

Table 2 summarizes the baseline results. First, the result obtained

with Hungarian phoneme recognizer in [3] was reproduced. Then,

the obvious shortcoming in our previous work — use of hard con-

stant to replace unseen trigrams — was fixed by Witten-Bell dis-
counting. This improved slightly the resulting EER.

More improvement was obtained from optimizing the phoneme

recognizer. The first change was increasing the size of hidden layer
from 500 to 1500 neurons. As the next step, the scheduler for neural

network learning rate was changed to halve the learning rate learning

if the decrease in the frame error-rate (FER) on the training (rather
than on the CV) set is less than 0.5 %. The number of training epochs
was fixed to 20. Both changes together lead to more than 1.3% ab-

solute improvement in EER. HU-PRLM-new+Witten-Bell was used

as the new baseline, it also served to generate the lattices and anti-

models described in the following sections.

4. PHONEME LATTICES

The following work concentrated on estimating LM statistics from
phoneme lattices rather than from strings and also using lattices to
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system PER [%] EER [%]

HU-PRLM from [3] 35.9 4.4
HU-PRLM from [3]+Witten-Bell 35.9 3.7

HU-PRLM-new+Witten-Bell 33.3 3.1

Table 2. Baseline results with Hungarian phoneme recognizer and
phonotactic model on phoneme strings. For information, phoneme

error rates are in the first column.

training on string training on lattice

scoring string 3.1 3.1

scoring lattice 3.6 2.3

Table 3. Experiments with phoneme strings and lattices.

score. PRLM is based on tokenizing speech first. We have shown
that it is not important when the tokens (phonemes) come from a

different language. However, we have to take into account that the

tokenizer, as all speech recognition techniques, is not 100% accu-

rate. Common practice in LVCSR, acoustic information retrieval,
etc. is to use richer structure at the end of decoder: lattices instead

of strings.

In LID, this approach was tested by Gauvain at al. [4] with good

results. Gauvain at al. find estimates of N -gram statistics iteratively

by EM algorithm. First, they compute phoneme posterior probabili-
ties in the lattice. NewN -gram estimates are then weighted by these

posteriors. In several iterations, they 1) expand old lattice by the new

N -gram probabilities, 2) recompute phoneme posteriors (now with

phonotactic scores), and 3) make new N-gram estimates.

We have used simpler approach: we generated phoneme lattices

only from acoustic scores without introducing any phonotactic con-
straints. Then, all four combinations of LM-estimation and scor-

ing (see Table 3) were tested. When lattice was used in training or

scoring, the N -grams on given path were weighted by the posterior

probability of this path.

In Table 3 we see that training on lattice and scoring raw strings
does not bring any improvement and training on strings and scoring

lattices even degrades performance of the system. The most intuitive

lattice-lattice setup performs the best bringing almost 1% absolute

improvement in EER.

5. ANTI-MODELS

Anti-model training works in the following way: We will denote all

utterances belonging to language L as set S+

L
and all utterances not

belonging to language L as set S−

L
. First, the training of phonotactic

model LM+

L
of each language L is done in standard way using only

the set S+

L
. Then, all training utterances are scored by all phonotactic

models and posteriors of utterances are derived:

P(Or|L) =
L(Or|LM+

L
)

P
∀L

L(Or|LM+

L
)

(1)

whereOr is the r-th training utterance and L(Or|LM+

L
) is the like-

lihood provided by phonotactic model LM+

L
.

For language L, the parameters of anti-model LM−

L
should be

trained on all segments from S−

L
mis-recognized as L. We can how-

ever use all utterances Or ∈ S−

L
and weight their trigram counts

by the posteriors P(Or|L). Obviously, an utterance from S−

L
with
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Fig. 2. Results with different anti-models.

high probability to be mis-recognized as L will contribute more to

the anti-model than an utterance correctly recognized as language G

where G �= L.
We have tested three flavors of anti-model training:

1. LM−

L
is estimated from segments of S−

L
but also from S+

L
.

We could call this model “normalizing model” rather than

anti-model.

2. LM−

L
is estimated only from segments of S−

L
with pure pos-

terior (Eq. 1) weighting of trigram counts.

3. LM−

L
is estimated only from segments of S−

L
, but in addition

to posterior weighting, the trigram counts are also inversely
weighted by the priors of different languages in S−

L
. For ex-

ample, when we train anti-model for Arabic and we see 90%

English and 10% of Tamil in S−

L
, the counts of English seg-

ments are divided by 0.9 and these of Tamil by 0.1.

In all three cases, the score of utteranceOr is obtained by subtracting

the weighted likelihood of anti-model from the target model:

log S(Or|L) = logL(Or|LM
+

L
) − k logL(Or|LM

−

L
),

where the constant k needs to be tuned experimentally.

In all anti-model experiments, language models were trained and
evaluated on lattices and Witten-Bell discounting was used. Figure 2

presents the resulting EERs of the system for different settings of k.

For k = 0 (no anti-model), all results are equal to EER=2.25% re-
ported already in Table 3. We see that all three anti-models improve

the results. The normalizing LM−

L
is the worst, and the position of

its minimum EER is very sensitive on optimal tuning of k. On the

other hand, “pure” anti-models do well with a stable minimum at

k = 0.3. The anti-model using all data from S−

L
is preferred. The

results were verified also with other test segment durations (10s and
3s), another phoneme recognizer (Czech and Russian) and different

target data (NIST 1996), with the same stable peak at k = 0.3.

6. CONCLUSIONS

Table 4 compares our system to the best published results on NIST

2003 data. MIT system [2] labeled MIT-FUSE was based on merg-
ing of output of PPRLM (6 languages from OGI Stories), Gaussian
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system 30s 10s 3s
MIT-FUSE 2.8 7.8 20.3
LIMSI-NN 2.7 7.9 18.3

BUT-SPDAT 2.4 8.1 19.1

BUT-PRLM-2005 1.8 6.6 18.8

BUT-GMM-MMI 128G [14] 2.0 5.5 14.8

BUT-2005 PPRLM+GMM 0.8 3.0 11.8

Table 4. Comparison of systems on NIST 2003 data

Mixture Model and Support Vector Machine trained on acoustic fea-

tures. LIMSI-NN system [4] is a PPRLM trained on 3 languages

(CallHome – Arabic, SchwitchBoard – English and CallHome –
Spanish); it uses phoneme lattices to train and score phonotactic

models and neural-net based merging of individual scores. Our ear-

lier system BUT-SPDAT [3] is a PPRLM trained on 4 languages

from SpeechDat-East with linear merging of individual scores.

The system described in this paper: BUT-PRLM-2005 includes

one PRLM system with all contributions from this paper: improved
Hungarian phoneme recognizer, back-off with Witten-Bell discount-
ing, lattice training and scoring and anti-models. We see, that for

durations 30s and 10s, our system based on a single phoneme recog-

nizer outperforms sophisticated systems using parallel combination

of phonotactic models and acoustic scoring.

The last two lines of the table present results obtained with our

discriminatively trained GMM based acoustic system (BUT-GMM-

MMI 128G) [14] and our final system (BUT-2005 PPRLM+GMM),

which is a fusion [3] of the acoustic system, the PRLM system de-
scribed in this paper and a similar PRLM based on Russian phoneme

recognizer. Similar system was also very successful in 2005 NIST

language recognition evaluations.
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phoneme strings using TRAP technique,” in Proc. Eurospeech,
Geneva, Switzerland, Sept. 2003, pp. 825–828.

[7] H. Hermansky and S. Sharma, “Temporal patterns (TRAPs)

in ASR of noisy speech,” in Proc. IEEE Int. Conf. Acoust.,
Speech, Signal Processing (ICASSP), Phoenix, Arizona, Mar.
1999, pp. 2427–2431.
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