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ABSTRACT

It had been shown that a segment of pitch contour
represented by a set of Legendre polynomial coefficients
was successful to the pair-wise language identification task.
Feature vectors comprising these polynomial coefficients
were formerly modeled by a Gaussian mixture model (GMM)
for each language. However, the static model like GMM
does not take advantage of the temporal information across
several pitch contours. It is intuitive that the temporal
information of prosodic features should be used for
capturing the characteristics of a specific language. In this
paper, a novel dynamic model in ergodic topology is
proposed. The experiments show that the proposed method
significantly improves the identification rate, even for stress-
timed and syllable-timed languages.

1. INTRODUCTION

The automatic language identification (LID) is a
process by which the language of a digitized speech utterance
is recognized by a computer. Over the past decades, many
approaches have been proposed to deal with the LID task
[1][2][3]. They tried to capture the specific characteristics of
each language. These characteristics roughly fall into three
categories : the phonetic repertoire, the phonotactics, and the
prosody. So far the most successful system is based on the
phonotactics. However, the knowledge of phonotactics of a
particular language can not be utilized without a linguistic
expert. Moreover, manually labeling of speech data in the
preparation is also a time-consuming task. The system based
on phonetic repertoire utilizes the statistics of phone
frequencies of occurrence. Many languages share a common
subset of phones, but the frequency of occurrence of a
common phone may differ among these languages. This idea
was used in Muthusamy’s [4] and Hazen’s [5] LID systems.
Prosody-based LID systems capture the duration, the pitch
pattern, and the stress pattern in a language. LID systems
based on prosody properties so far perform worse than those
based on phonotactics or phonetic repertoire. The reason is the
lack of efficient way to model these prosody characteristics.

Therefore LID task based on prosody properties is still a
challenging problem.

In this paper, we focus on the utilization of pitch
information to LID task. Very few papers deal with the
method using pitch information. Cummins [6] used Long
Short-Term Memory (LSTM) model by applying
differenced log-F0 and amplitude envelope information. He
concluded that the better performance could be achieved by
using F0 information only. His conclusion was also
correspondent with Thymé-Gobbel’s [7] work. Rouas [8]
used fourth order statistics of pitch information combining
with rhythmic parameters for LID task. A GMM method
using Legendre polynomial coefficients of pitch contour has
shown some success to LID task, especially for languages
with special pitch patterns, like pitch-accent languages and
tonal languages [9].

It is intuitive that the temporal information plays an
important role while considering prosodic properties. Static
modeling may not fully take advantages of such information
as time progresses. Here we proposed a dynamic model in
ergodic topology so that it can utilize more information as
time proceeds. Experiment results show that the
performance of language identification has been improved
significantly by using this new model. Besides pitch-accent
and tonal languages, stress-timed and syllable-timed
languages are also benefited by the proposed model.

In the following sections, we first explain the pre-
processing procedures such as the pitch contour extraction,
the pitch contour segmentation, and the pitch contour
representation. Then the proposed dynamic model will be
introduced � The static model will also be revisited.
Experiments are conducted to show the effectiveness of our
proposed method. Finally a discussion is presented.

2. PRE-PROCESSING PROCEDURE

2.1. Pitch Contour Extraction

The pitch contour extraction is mainly with the help of
Praat program [10]. The method we adopted is the one
proposed by Boersma [11]. This method utilizes the
autocorrelation function to detect vocalic segments and find
pitch candidates. Then Viterbi algorithm is used to find the
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most suitable contour path. Parameter settings used in this
paper are the same as those were listed in [9]. The detail
description of each parameter is described in Boersma’s
paper.

In the spontaneous speech, the vocalic portion of
speech signal may across syllable or word boundaries. Some
extracted pitch contours are somewhat too long. In order to
segment those long pitch contours into shorter ones, we
further utilize the information from the energy contour.
Valley points of energy contour are candidates for contour
segmentation. The additional constraint is that each
segmented pitch contour should not be less than 50ms.

2.2. Pitch Contour Approximation

For each segmented pitch contour tf , we approximate
it by an M-th order Legendre polynomial in the sense of
minimum mean square error.
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, where t is the pitch contour index, M is the highest
polynomial order, ita is i-th order coefficient, and iP is i-th
order Legendre polynomial. In most cases, small value of M
is sufficient. From our previous study, ta1 and ta2 are the
most helpful coefficients to language identification task.
Notice that 0P stands for the height of pitch contour, 1P
stands for the slope of pitch contour, 2P stands for the
curvature of pitch contour, and 3P stands for the S-curvature
of pitch contour. With this representation, a feature vector

tv
�

is formed including the length of pitch contour tD and
two coefficients, ta1 and ta2 .

3. MODEL DESCRIPTION

3.1. Gaussian Mixture Model

Gaussian mixture model (GMM) is one of most well-known
static modeling methods and has been successfully applied
to various engineering problems. In the language
identification task, a GMM �,GMMΛ is created for each
language � . Under GMM assumption, the likelihood of a
feature vector feature tv

�
is represented by a weighted sum

of multi-variant Gaussian density:
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During the recognition, an unknown speech utterance
is represented by a sequence of feature vectors. Then the
log-likelihood GMML

�
produced by the model �,GMMΛ is

calculated as follows,
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3.2. Dynamic Model in Ergodic Topology

The temporal information of prosodic features is
important in capturing the characteristics of a specific
language. It is obvious that a static model like GMM can’t
describe temporal information across several pitch contours.
Here a novel dynamic model was proposed to compensate
for the weakness of static model.

In brief, the proposed dynamic model �,DMΛ for each
language � is composed of a set of states and a set of
transition probabilities. Each state is modeled by a GMM,
and transition probabilities are modeled by (i) bigram, (ii)
trigram, or (iii) mixture of bigrams. This topology is the
same as ergodic Markov model in speech recognition.

In the training phase, we first define a rule )(⋅DR to
cluster feature vectors tv

�
into six groups according to their

duration components tD . These six groups correspond to
six states. The rule is described as follows,
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, where tS is the state. After clustering, each state )(kS is
modeled by a GMM �

)(kS
λ . It should be noted that in this

training step, feature vector tv
�

is modified to tu
�

which
consists of only two components, ta1 and ta2 .

Transition probabilities can be modeled by the
conventional method like bigram probabilities )|( 1−tt SSp
or trigram probabilities ),|( 21 −− ttt SSSp . In this paper, we
also adopt another modeling technique, i.e., the mixture
transition distribution model [12]. The main purpose of this
method is to approximate the high-order Markov model with
mixtures of low-order Markov models. For example, the
transition probability matrix of a conventional N-th order
Markov model is specified by )( 1+NmO elements, where
m is the number of states. With mixture transition
distribution model, )( 1+NmO elements can be reduced to
only )( 2NmO elements. Here we approximate trigram
probabilities with mixture of two bigrams as follows.
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, where nβ are mixture weights and � = 1nβ , 10 << nβ .
During the recognition, feature vectors { tu

�
} are used. The

log-likelihood DML
�

produced by the model �,DMΛ is
calculated as
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, where α is a balance factor between the observation log-
likelihood score and the transition log-likelihood score, and

�TP is the transition probability in one of following three
forms:
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Finally, a maximum-likelihood classifier hypothesizes �̂ as
the language of the unknown utterance, where
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4. EXPERIMENTS

The pair-wise LID experiment was conducted using the
Oregon Graduate Institute Telephone Speech (OGI-TS)
Corpus [13] which including the following 10 languages:
English, Farsi, French, German, Japanese, Korean, Mandarin,
Spanish, Tamil, and Vietnamese. For each language, 50
speakers in TrainSet were used to train both static model and
dynamic model. 20 speakers in EvalSet were used to evaluate
the system performance. Only 45-sec and 10-sec utterances in
EvalSet are chosen for the evaluation. The identification rate
is calculated as the number of correctly identified utterances
out of all evaluation utterances.

Experimental results are listed from Table 1 to Table 3.
In Table 1, each identification rate is averaged from 45 pair-
wise LID tasks. Rates in brackets are relative performance
improvement with respect to the performance of static model,
GMM. Relative performance is defined as (RateDM − RateGMM)
/ RateGMM . With dynamic modeling, we achieve significant
improvement on 45-sec utterances and somewhat minor
improvement on 10-sec utterances. It is also worth noting that
transition probabilities modeled by mixture of bigrams
achieves the highest identification rate, since this modeling
technique benefits from more information across longer
history like trigram but avoids insufficient training data
problem that the trigram may encounter.

In Table 2, we look into identification rate of each
language. Each rate in column 1 and column 2 is averaged
from 9 pair-wise LID tasks. It reveals that all 10 languages
benefit from the proposed dynamic model, even for stress-
timed languages, like English and German, and syllable-timed
languages, like French and Spanish. For both 45-sec and 10-
sec utterances, German has the highest improvement. On the
other hand, Japanese and Mandarin are not benefit much from
dynamic model. Japanese even has little degradation on 10-sec
utterances.

Results of all 45 pair-wise LID tasks on 10-sec and 45-
sec utterances are given in Table 3. All rates listed in the table
are derived from dynamic model with mixture of bigrams.
Rouas’s work on 45-sec utterances is also shown in square
brackets. Compare to our results, our proposed dynamic
model performs better for almost all pair-wise identification
tasks. Only 4 out of 45 pairs perform worse.

Table 1. Comparison of performance of difference models
45-sec 10-sec

GMM 68.91% 65.45%
Dynamic Model – Bigram 80.23%

(16.43%)
69.83%
(6.69%)

Dynamic Model – Trigram 79.62%
(15.54%)

68.84%
(5.18%)

Dynamic Model – MixBigram 81.35%
(18.05%)

70.02%
(6.98%)

Table 2. Identification rate of each language
GMM Dynamic Model

- MixBigram
Relative

Improvement
45s 67.03% 81.84% 22.09%EN-other
10s 59.31% 65.99% 11.26%
45s 74.48% 85.05% 14.18%FA- other
10s 68.05% 70.98% 4.32%
45s 61.00% 71.51% 17.23%FR- other
10s 60.00% 66.91% 11.52%
45s 63.77% 84.65% 32.75%GE- other
10s 61.32% 70.02% 14.19%
45s 79.10% 86.08% 8.82%JA- other
10s 81.60% 79.48% -3.83%
45s 67.67% 82.71% 22.22%KO- other
10s 64.47% 69.57% 7.91%
45s 76.54% 83.41% 8.97%MA- other
10s 71.69% 73.09% 1.94%
45s 61.26% 73.31% 19.67%SP- other
10s 58.32% 64.23% 10.13%
45s 63.05% 76.75% 21.73%TA- other
10s 61.53% 67.71% 10.05%
45s 74.82% 88.21% 17.90%VI- other
10s 68.20% 73.24% 7.39%

5. DISCUSSION

Examine Table 2 and Table 3 in more detail, we can
observe that the performances of syllable-timed languages like
French and Spanish are not as good as others. Though their
relative improvements look good in some extent, the proposed
dynamic model may not be good enough for this type of
languages. On the other hand, the performance of stress-timed
languages, like English and German, boosts a lot. The duration
of vocalic portion varies often as time proceeds. This is one of

I ­ 195



the characteristics of stress-timed languages. It makes stress-
timed languages look like “Morse-code” languages. Our
dynamic model captures this special property because the
transition probabilities are explicitly based on the duration of
pitch contours. At last, for those pitch-accent and tonal
languages, the higher performance is mainly due to the novel
representation of pitch pattern by Legendre polynomials. The
consideration of duration changes as time proceeds for this
kind of language contributes only a little.
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Table 3. Confusion matrix of pair-wise LID task on 10 languages.
10/45 sec FA FR GE JA KO MA SP TA VI
EN 64.3/89.7

[76.3]
64.1/70.3

[51.5]
64.4/76.9

[59.5]
77.2/78.9

[67.6]
68.4/88.9

[79.4]
73.2/83.8

[75.0]
63.7/77.8

[67.7]
56.4/78.8

[77.4]
61.9/91.4

[67.7]
FA -- 72.0/86.8

[68.6]
75.5/95.0

[71.8]
81.8/94.9

[66.7]
69.3/75.7

[75.0]
73.4/84.2

[76.3]
62.0/70.2

[66.7]
67.5/88.2

[69.7]
73.1/80.6

[66.7]
FR -- -- 57.6/65.8

[55.9]
81.6/81.1

[55.9]
65.1/65.8

[54.8]
75.2/75.0

[60.6]
62.4/57.1

[64.3]
53.8/59.3

[60.1]
70.3/82.3

[58.1]
GE -- -- -- 79.4/82.1

[65.8]
70.1/89.2

[71.4]
73.5/92.1

[62.2]
65.4/81.1

[59.4]
72.1/85.3

[69.7]
72.0/94.4

[65.7]
JA -- -- -- -- 78.6/88.9

[65.7]
72.2/83.8

[54.1]
75.5/86.1

[62.5]
77.8/81.8

[59.4]
82.2/97.1

[68.6]
KO -- -- -- -- -- 73.2/91.4

[73.5]
57.5/76.5

[75.9]
71.1/74.2

[62.1]
72.8/93.9

[56.2]
MA -- -- -- -- -- -- 65.6/77.1

[80.6]
75.2/75.0

[74.2]
76.3/88.2

[50.0]
SP -- -- -- -- -- -- -- 55.4/58.1

[65.4]
70.5/75.8

[62.1]
TA -- -- -- -- -- -- -- -- 80.0/90.0

[71.4]
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