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ABSTRACT

The availability of real-time continuous speech recognition on
mobile and embedded devices has opened up a wide range of re-
search opportunities in human-computer interactive applications. Un-
fortunately, most of the work in this area to date has been con-
fined to proprietary software, or has focused on limited domains
with constrained grammars. In this paper, we present a preliminary
case study on the porting and optimization of CMU SPHINX-II, a
popular open source large vocabulary continuous speech recogni-
tion (LVCSR) system, to hand-held devices. The resulting system
operates in an average 0.87 times real-time on a 206MHz device,
8.03 times faster than the baseline system. To our knowledge, this
is the first hand-held LVCSR system available under an open-source
license.

1. INTRODUCTION

Mobile, embedded, and hands-free speech applications fundamen-
tally require continuous, real-time speech recognition. For example,
an intelligent, interactive personal information assistant where nat-
ural speech has replaced the cumbersome stylus input and cramped
graphical user interface of a PDA. Many current applications, such
as speech control of GPS navigation systems and speech-controlled
song selection for portable music players and car stereos also require
a reliable and flexible speech interface. Finally, sophisticated natural
language applications such as handheld speech-to-speech translation[1]
require fast and lightweight speech recognition.

Several technical challenges have hindered the deployment of
such applications on embedded devices. The most difficult of these
is the computational requirements of continuous speech recognition
for a medium to large vocabulary scenario. The need to minimize the
size and power consumption for these devices leads to compromises
in their hardware and operating system software that further restrict
their capabilities below what one might assume from their raw CPU
speed. For example, embedded CPUs typically lack hardware sup-
port for floating-point arithmetic. Moreover, memory, storage capac-
ity and bandwidth on embedded devices are also very limited. For
these reasons, much of past work (e.g. [2], [3]) has concentrated on
simple tasks with restrictive grammars.
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In addition to hardware limitations, interested developers face
a high barrier in building such systems. It requires access to pro-
prietary speech recognition toolkits which are often expensive and
usually provided without source code. As well, popular embedded
operating systems may lack many of the features developers take for
granted on modern desktop systems, most notably a complete stan-
dard C/C++ programming library and a fast virtual memory subsys-
tem.

POCKETSPHINX is the authors’ attempt to address the above
issues. Our work builds on previous research in the Carnegie Mellon
Speech group related to fast search techniques ([4] and [5]) and fast
GMM computation techniques ([6], [7] and [8]). We believe that this
work will benefit the development community and lead to the easier
creation of interesting speech applications. Therefore, we have made
this work available to the public without cost under an open-source
license. To the best of our knowledge, this is the first open-source
embedded speech recognition system that is capable of real-time,
medium-vocabulary continuous speech recognition.

2. BASELINE SPHINX-II SYSTEM

The target hardware platform for this work was the Sharp Zaurus SL-
5500 hand-held computer. The Zaurus is typical of the previous gen-
eration of hand-held PCs, having a 206MHz StrongARM R© proces-
sor, 64MB of SDRAM, 16MB of flash memory, and a quarter-VGA
color LCD screen. We chose this particular device because it runs
the GNU/Linux R© operating system, simplifying the initial port of
our system. However, the CPU speed and memory capacity of this
device are several years behind the current state of the art, making
it commensurately more difficult to achieve the desired level of per-
formance. To build our system, we used a GCC 3.4.1 cross-compiler
built with the crosstool script1.

Platform speed directly affected our choice of a speech recogni-
tion system for our work. Though all the members of the SPHINX

recognizer family have well-developed programming interfaces, and
are actively used by researchers in fields such as spoken dialog sys-
tems and computer-assisted learning, we chose the SPHINX-II rec-
ognizer2 as our baseline system because it is faster than other recog-
nizers currently available in the SPHINX family.

To evaluate our system’s performance, we used 400 utterances
randomly selected from the evaluation portion of the DARPA Re-

1http://kegel.com/crosstool/
2http://www.cmusphinx.org/
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source Management (RM-1) corpus. The acoustic model uses Hid-
den Markov Models with a 5-state Bakis topology and semi-continuous
output probabilities. It was trained from 1600 utterances from the
RM-1 speaker-independent training corpus, using 256 tied Gaussian
densities, 1245 tied Gaussian Mixture Models (senones), and 39570
context-dependent triphones. The input features consisted of four in-
dependent streams of MFCC features, delta and delta-delta MFCCs,
and power. A bigram statistical language model was used with a vo-
cabulary of 994 words and a language weight of 9.5. The test set
perplexity of this language model is 50.86.

On our development workstation, a 3GHz Intel R© Pentium R© 4
running GNU/Linux, SPHINX-II runs this task in 0.06 xRT. After
the first stage of porting the system to the Zaurus target platform,
without applying any optimizations, this same task takes 7.15 xRT.
The baseline word error rate is 9.73%. Clearly, this is much too slow
to be useful for even the simplest recognition tasks.

3. PLATFORM OPTIMIZATIONS

In the next stage of development, we investigated potential speed-ups
based on our knowledge of the hardware platform. First, we noted
that for embedded devices, memory access is slow and RAM is at
a premium. We made several changes to the system to address this
problem, described in Section 3.1. Second, the data representation
was not optimal for the capabilities of the target CPU. Lastly, some
implementation details led to inefficient code being generated for
the target platform. The changes we made to address these issues
are described in Section 3.2.

3.1. Memory Optimizations

Memory-mapped file I/O: For embedded devices, where RAM is a
scarce resource, acoustic model data should be marked as read-only
so that it can be read directly from ROM. On embedded operating
systems, the ROM is usually structured as a filesystem, and thus it
can be accessed directly by using memory-mapped file I/O functions
such as mmap(2) on Unix or MapViewOfFile() on Windows.

Byte ordering: Unfortunately, the original binary formats for
SPHINX-II acoustic and language models were not designed with
read-only access in mind. In particular, they used a canonical byte-
order that requires them to be read into memory and then byte-
swapped. We modified the HMM trainer, SPHINXTRAIN, to output
these files in the target system’s native byte-order. We then modi-
fied SPHINX-II to use existing header fields to determine the byte-
ordering of the file, thus allowing memory-mapping for files in the
native byte order.

Data alignment: Modern CPUs either require or strongly en-
courage aligned data access. For example, a 32-bit data field is re-
quired to be aligned on a 4-byte address boundary. Where the model
file formats mixed data fields of different widths, it was necessary to
insert padding to ensure proper alignment. The result is that, while
our version can read model files from previous versions, the files
generated by it are not backward-compatible.

Efficient representation of Triphone-senone mapping: Gen-
erally in SPHINX-II these are read from two large text files, and
stored in equally large hash tables. By contrast, the SPHINX-III
system uses a single, compact “model definition” file which is repre-
sented by a tree structure in memory, a much more memory-efficient
solution. Therefore, we back-ported the model definition code from
SPHINX-III to our system, producing a significant reduction in mem-
ory consumption and a much faster startup time.

3.2. Machine-Level Optimizations

Use of Fixed Point Arithmetic: The StrongARM processor has no
hardware support for floating-point operations. Floating-point com-
putations must be emulated in software, usually by a set of math rou-
tines provided by the compiler or by the runtime library. Since these
routines must exactly replicate the functionality of a floating-point
coprocessor, they are too slow for arithmetic-intensive tasks such as
acoustic feature extraction and Gaussian computation. Therefore,
we found it necessary to rewrite all time-critical computation using
integer data types exclusively.

Two basic techniques for doing this exist: either values can be
kept pre-scaled by a given factor (usually a power of two, for the
best performance) or they can be converted to logarithms (usually
with a base very close to 1.0, for the best accuracy). The choice de-
pends primarily on the dynamic range of the values in question and
on the types of operations that will be performed on them. In our
system, we calculate the Fast Fourier Transform (FFT) using signed
32-bit integers with a radix point at bit 16, that is, in Q15.16 format.
However, to calculate the MFCC features, we need to take the power
spectrum, whose dynamic range far exceeds the limits of this for-
mat. Since we will eventually take the log of the spectrum in order
to compute the cepstrum, we use a logarithmic representation for the
power spectrum and the Mel-filter bank. Addition of logarithms is
accomplished using a lookup table, shared with the GMM computa-
tion component, which also operates on integer values in log-space.

The use of fixed-point arithmetic inevitably involves some round-
ing error, which is compounded by each operation performed. It is
therefore important to choose algorithms that minimize the number
of operations, not only for speed, but also to maintain accuracy. For
example, one way to optimize an FFT for real-valued input data is
to perform a half-length complex FFT on the input data, then post-
process the output to separate the real and imaginary parts[9]. How-
ever, when this is done in fixed-point, the added processing leads
to errors that can significantly increase the word error rate, in some
cases by up to 20% relative.

Optimization of data and control structures: The ARM archi-
tecture is heavily optimized for integer and Boolean computation.
Most instructions include a “shift count” field that allows the out-
put operand to be bit-shifted by an immediate value without penalty.
In addition, most instructions can be nullified on any condition, al-
lowing many short branches to be eliminated. Finally, the ARM
is a 32-bit load-store architecture with 16 general-purpose registers.
Therefore it is important to keep data in registers while performing
intensive computations, it is always faster to access memory 32 bits
at a time, and unaligned accesses must be avoided at all costs. In
general, a good optimizing compiler can make efficient use of the
register file, but in some cases it is necessary to manually unroll
loops in order to generate the most efficient code.

As a case in point, a large percentage of CPU time in the SPHINX-
II system is spent in the maintenance of the list of active senones to
be computed for each frame of input. In the baseline system, this
list is generated by setting flags in an array of bytes which is then
scanned to produce an array of senone IDs. This arrangement is
sensible since there are typically many fewer active senones than to-
tal senones. However, the byte-array representation places greater
load on the processor’s cache, and also involves byte-wide accesses
that are slow on CPUs such as ARM and PowerPC. Therefore, we
changed the representation to be a bit vector, and unrolled the loop
that scans this bit vector to operate on one 32-bit word at a time. This
also allows it to skip entire blocks of 32 senones in the case where
the active list is very sparse. In examining the generated assembly
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code, we find that it is now very efficient: only 4 instructions are
used to check each senone in the bit vector and conditionally add it
to the list.

4. ALGORITHMIC OPTIMIZATIONS

After completing the platform and software optimizations detailed in
the last section, we examined the output of the GNU gprof source-
level profiling tool to determine where to look for more principled
speed-ups. We found that the bulk of computation was spent in four
areas: acoustic feature (MFCC) calculation, Gaussian (codebook)
computation, Gaussian mixture model (senone) computation, and
HMM evaluation (Viterbi search)3. The approximate proportion of
time spent in these four areas is shown in Table 1.

Component Desktop Embedded

Codebook 27.43% 24.59%
HMM 24.68% 22.11%
MFCC 14.39% 11.51%
Senone 7.67% 11.71%

Table 1. Percentage of time spent in selected tasks

In our algorithmic optimizations, we concentrated primarily on
Gaussian mixture model (GMM) computation, since in previous work
[6] we have developed a well-reasoned framework for approximate
GMM computation. In this framework, GMM evaluation is divided
into 4 layers of computation:

1. Frame layer: all GMM computation for an input frame.

2. GMM layer: computation of a single GMM.

3. Gaussian layer: computation of a single Gaussian.

4. Component layer: computation related to one component in
the feature vector (assuming a diagonal covariance matrix).

This framework allows a straightforward categorization of dif-
ferent speed-up techniques by the layer(s) on which they operate,
and allows us to determine how different techniques can be applied
in combination with each other. However, this framework, as with
much other work in approximate GMM calculation, applies primar-
ily to systems using continuous distribution HMMs (CDHMM). In
application of the idea to semi-continuous HMMs (SCHMM), sev-
eral differences should be noted:

• In the full computation of semi-continuous acoustic models,
a single “codebook” of Gaussian densities is shared between
all mixture models.

• The number of mixture Gaussians is usually 128 to 2048,
which is much larger than the 16 to 32 densities used for each
mixture in a typical CDHMM system.

• SCHMM-based systems usually represent the feature vector
with multiple independent streams.

Therefore, though the four-layer model still applies, the layers
beneath the frame layer are structured differently. In particular, since
the codebook is shared between all GMMs, the entire codebook must
be computed at every frame. This limits the degree to which approx-
imations at the GMM layer can reduce computation. We applied the
following techniques to each layer:

3In fact, 74% of the total running time is spent in only 13 functions!

• Frame layer: We applied frame-based downsampling (see
[10]). Although this inevitably results in a loss of accuracy,
it is the only way we found to achieve a speed-up above the
Gaussian layer.

• GMM layer: We attempted to apply context-independent
GMM-based GMM selection ([11], [7]). However, we found
that the overhead of this technique far outweighed the reduc-
tion in GMM computation.

• Gaussian layer: We considered several possibilities such as
Sub-VQ-based Gaussian selection[8], but all of these involve
significant overhead. Therefore, we decided to use a fast tree-
based approach to Gaussian selection.

• Component layer: SPHINX-II already implements a form of
partial Gaussian computation[12]. We used information from
the tree-based Gaussian selection to improve the efficiency of
this algorithm.

The computation of the codebook is already relatively quick in
SPHINX-II. At each frame, the previous frame’s top-N scoring code-
words (for some small N , typically 2 or 4) are recomputed and the
resulting distances are used as a threshold for partial computation
of the remaining codewords[12]. Computation of senones has also
already been optimized, by transposing the mixture weight arrays
in memory and quantizing them to 8-bit integer values[4], as well
as by providing separately optimized functions for each of the most
common top-N values.

In the frame layer, we initially applied frame-based downsam-
pling in a straightforward manner, by simply skipping all codebook
and GMM computation at every other frame. However, we later
modified this to recompute the top-N Gaussians from the previous
frame and use these to compute the active senones from the current
frame. This is analogous to the “tightening” of the CI-GMM se-
lection beam that is implemented in SPHINX-III 0.6 [7]. We found
that this was actually faster by a very small margin (0.6%) and also
resulted in a 10% relative decrease in the word error rate.

In the Gaussian layer, we applied a modified version of the bucket
box intersection algorithm, as described in [13]. This algorithm or-
ganizes the set of Gaussians in a kd-tree structure which allows a
fast search for the subset of Gaussians closest in the feature space to
a given feature vector. For each acoustic feature stream in the code-
book, we build a separate tree of arbitrary depth (typically depth 8
or 10, to reduce storage requirements) with a given relative Gaussian
box threshold. At each frame, after computing the previous frame’s
top-N codewords, we search the kd-tree to find a shortlist of Gaus-
sians to be partially computed.

Though the trees are built off-line, the depth to search in the tree
can be controlled as a parameter to the decoder at run-time. This
allows the memory requirement for the trees to be quite small, since
the shortlists of Gaussians need only be stored at the leaf-nodes. We
also explored the idea of limiting the maximum number of Gaus-
sians to be searched in each leafnode. In order to make this feasible,
we sorted the list of Gaussians in a leafnode by their “closeness” to
the k-dimensional region, or bucket box, delimited by that node. We
found that an appropriate criterion is the log-ratio of the total vol-
ume of the individual Gaussian’s bucket box to the area in which it
overlaps with the leafnode’s bucket box.

5. EXPERIMENTAL RESULTS

The result of applying various optimizations in sequence is shown in
Table 2. As expected, the largest speed gain we were able to achieve
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xRT Speed-up WER ∆
Baseline 7.15 0 9.73% 0
w/Fixed-point 2.68 2.67 10.06% +3.4%
w/Real FFT 2.55 1.05 10.06% 0
w/Log Approx 2.29 1.11 10.75% +6.9%
w/Assembly 1.60 1.43 10.69% -0.6%
w/Top-2 Gaussians 1.40 1.14 11.57% +8.2%
w/Viterbi-only 1.06 1.32 12.61% +8.9%
w/Downsampling 1.00 1.06 13.29% +5.4%
w/Beam-tuning 0.89 1.12 14.61% +9.9%
w/kd-trees 0.87 1.02 13.95% -4.5%

Table 2. Performance and accuracy on 994-word RM task after suc-
cessive optimizations

came from the use of fixed-point arithmetic. Simply reimplementing
the existing acoustic feature extraction in fixed-point resulted in a
2.7-fold gain in speed. The loss of precision caused a slight increase
in the word error rate, from 9.73% to 10.06%.

The only algorithmic “free lunch” came from the use of a FFT
algorithm specialized for real-valued inputs[9]. After speeding up
the FFT, the fixed-point logarithm function used in MFCC calcula-
tion became a bottleneck, so we reduced its precision, resulting in
a significant gain in speed, albeit with a reduction in accuracy. We
then reimplemented the fixed-point multiply operation using inline
ARM assembly language, giving another large boost in speed with
no degradation in accuracy.

We changed several decoder parameters to their “faster” val-
ues in order to boost the speed of the system. The number of top-
N Gaussians used to calculate the senone scores was reduced to 2
(and a loop in the top-2 senone computation function was unrolled).
SPHINX-II uses a multi-pass decoding strategy, performing a fast
forward Viterbi search using a lexical tree, followed by a flat-lexicon
search and a best-path search over the resulting word lattice. In order
to get the best performance, we disabled the latter two passes.

Next, we applied partial frame downsampling, then used a sep-
arate held-out set of 200 utterances to find the optimal widths for
the various beams used in decoding, in order to reduce the amount
of time spent in Viterbi search. We then used the same held-out set
to find the optimal threshold and depth of kd-trees to use. To our
surprise the use of kd-trees actually reduced the error rate slightly.

The final system has a word error rate of 13.95% on our test
set, degraded by 43.4% relative to the baseline system. We are en-
couraged by the fact that the largest sources of degradation were not
related to our algorithmic optimizations, but rather from overly zeal-
ous tuning of the search parameters. Such tuning could be relaxed
for more recent processors or can be adjusted for different tasks. It
is also likely that with better acoustic modeling and cross-validation,
these errors could be reduced or eliminated. In addition, this final
system exhibited an 8-fold reduction in CPU usage from the baseline
system and a 3-fold reduction from the baseline machine-optimized
system.

6. CONCLUSION AND FUTURE WORK

In this paper, we present a 1000-word vocabulary system operating
at under 1 xRT on a 206 MHz hand-held device. The system in
question has been released as open source code and is available at
http://www.pocketsphinx.org/. POCKETSPHINX inher-
its the easy-to-use API from SPHINX-II, and should be useful to
many other developers and researchers in the speech community.

In future, we will apply this system to a task with a higher per-
plexity language model and larger vocabulary. A candidate for fur-
ther optimization is the Viterbi search algorithm, which we have not
discussed in depth in this paper. Such a system will support de-
velopment of additional, more interesting applications. We are also
working on a port of POCKETSPHINX to the popular Windows R©CE
operating system and Pocket PC hardware.
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