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ABSTRACT

In this paper we propose a memory efficient version of the 

Gaussian Selection (GS) scheme, which is used for speeding up the 

likelihood calculations of an ASR system. The memory savings are 

achieved by using non-overlapping (disjoint) clusters instead of the 

overlapping clusters normally used in GS. As we will show, the 

new scheme achieves 66% computational savings with a relative 

increase in word error rate (WER) of 4%. We will also show, that 

combining the new GS scheme with frame rate reduction and 

feature masking provides further savings in computation. 75% (4% 

increase in WER) and 68% (3.5% increase in WER) savings were 

obtained by adding frame rate reduction and feature masking, 

respectively.  

1. INTRODUCTION

As voice user interface technology is maturing, it is becoming a 

more and more important input/output method for small, embedded 

devices. Using a voice user interface is especially convenient when 

the device is being used in situations where normal input methods 

are not available. 

For embedded devices, low memory and computational 

complexity implementations of the ASR algorithms is very 

important. Even though the computational power of embedded 

devices in rising constantly, cost will always be an important 

factor in designing mass-market products. Moreover, there will 

always be an increasing amount of applications competing for the 

same computational resources as the voice UI. 

In a HMM based speech recognizer more than half of the 

computational time can be spent in calculating the density 

likelihoods. Thus, any decrease in density calculation time will 

have an effect on the overall speed of the recognition algorithm. 

Numerous efficient algorithms have been proposed that address 

this problem. Using vector or scalar quantization of the acoustic 

model parameters, for example, allows for the acoustic models to 

be stored in a smaller amount of memory and for faster likelihood 

calculation without affecting recognition performance [1,2]. In [3], 

several techniques (feature component masking, variable rate 

updating of feature components and density pruning) for reduced 

complexity likelihood calculation are proposed. In [4], Gaussian 

Selection (GS) is used to select a shortlist of Gaussians for which 

to calculate accurate likelihoods, thus reducing computation. 

In this paper, we look at a few of the above methods for 

speeding up the process of calculating the density likelihoods. 

More, specifically, we examine GS, for which we present here a 

memory efficient implementation. We also look at how GS 

performs in combination with frame rate reduction and feature 

vector masking. 

The rest of the paper is organized as follows. First, in Section 

2.1, we will review GS. Then, in Section 2.2, we will introduce the 

proposed memory efficient GS implementation. Section 3 we look 

at two methods, frame rate reduction and feature vector masking, 

which can also be used to reduce the computational complexity of 

the likelihood computations. In Section 4 we show the results of 

recognition experiments done using the original GS and the 

proposed GS method. In addition we show how frame rate 

reduction and feature masking work together with GS. Conclusions 

are then finally drawn in Section 5. 

2. ALGORITHM DESCRIPTIONS 

2.1 Gaussian Selection 

GS was first introduced by Bocchieri in [4] and is used to limit the 

number of likelihood calculations needed during decoding.  The 

motivation in GS is that the likelihood of a feature vector can be 

approximated accurately only when it does not land on the tail of a 

Gaussian density [4]. Also, when the feature vector does land on 

the tail of a Gaussian density, the likelihood will be small, and thus 

it won’t contribute much to the state score. This implies that it 

would be beneficial to determine quickly the subset of Gaussians 

that the feature vector is not an outlier to, before the actual 

likelihood calculation. The likelihoods of these Gaussians would 

then be calculated and the likelihoods of the rest of the Gaussians 

would be set to some small constant. 

Gaussian densities are first grouped together into overlapping 

neighborhoods. These neighborhoods are created by first applying 

k-means clustering on the densities. The distance measure used in 

the clustering is a weighted Euclidian distance metric: 
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where d is the dimensionality of the feature vector, µi(k) is the 

kth component of the mean of the ith Gaussian density and w(k) is a 

weight equal to the kth diagonal element of the inverse square root 

of the average of the covariances of the Gaussian in the acoustic 

model set. 

After clustering, the cluster centers are stored and a 

neighborhood of Gaussians is determined for each of them. The 

neighborhood of a cluster center comprises all Gaussians for which 

the following equation holds: 
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where c(i) is the ith component of the cluster center, and Uavg(i)

is the ith diagonal component of the average of the covariance 

matrices of the Gaussians in the model set. Θ is a threshold, which 

controls the size of the neighborhood. It is also possible to use state 

information during the neighborhood creation to obtain better 
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performance, as described in [5]. In the experiments presented in 

this paper, however, state information is not used during clustering. 

During decoding, after a feature vector is obtained, the cluster 

center that is closest to the feature vector is found Equation 1 is 

used for the distance calculation by replacing µj with the current 

feature vector. The likelihoods for the Gaussians that belong to the 

neighborhood of this cluster center are then evaluated. The 

likelihood of the other Gaussians is set to some small constant 

value. The number of likelihoods that are calculated for every 

frame is controlled by the threshold Θ (see Equation 2). The 

smaller the Θ value, the less likelihoods are calculated which 

results in reduced computational complexity. Setting Θ too low, 

will however, result in lower recognition accuracies as too few 

likelihoods are calculated.

2.2 Gaussian Selection with non-overlapping clusters 

2.2.1 Motivation 

While GS has been shown to reduce the computation needed for 

the calculation of the density probabilities significantly, its use in 

embedded devices might not be justified because of increased 

memory requirements. The increased memory footprint needed for 

GS is due to two factors. First, the cluster centers and the distance 

weight need to be stored. The memory needed for these is however 

usually negligible when compared to the memory needed to store 

the actual densities. The number of neighborhoods ranges usually 

from 64 to 512, while the number of densities in a triphone 

acoustic model set might be several tens of thousands. Another 

source for the increased memory footprint is due to the fact that the 

neighborhood member information needs to be stored. The 

memory needed for this information is quite high. Consider for 

example an acoustic model set with 25K densities and 256 

neighborhoods. Since each density may belong to any of the 

neighborhoods, a 25,000 x 256 (1 bit elements) table that holds the 

neighborhood member information needs to be stored along with 

the models. This requires 800KB of memory. The size of a 

subspace distribution clustered acoustic model set which uses 4-bit 

quantization of the mean-variance value pairs requires about 600-

700KB [1]. This means that the GS information would more than 

double the memory footprint of the acoustic models! 

If, however, disjoint clusters were to be used instead of the 

overlapping neighborhoods, the cluster member information would 

require much less memory. This would be achieved by first 

arranging the densities in the memory according to the cluster 

membership information such that the densities belonging to the 

first cluster are placed first and so on. Now, only a table with as 

many elements as there are clusters would be needed. The 

elements in the table would represent the indices of the first 

density that belongs to the respective cluster. 

As mentioned in [4], using disjoint clusters results in problems 

when the feature vector lands near the edge of a cluster. When this 

happens, the densities that are close to the feature vector but lie on 

the ‘wrong side’ of the cluster border are not evaluated. This 

problem can be mitigated by keeping the cluster sizes relatively 

small (smaller than the neighborhoods) and picking several clusters 

for evaluation instead of picking just the closest cluster.  

Using disjoint clusters and picking more than one of them are 

the main ideas of the GS scheme proposed in this paper. This new 

scheme will be referred to as DCGS (disjoint cluster GS) for the 

rest of the paper. The clustering procedure and the cluster selection 

process done during decoding is explained next, in Sections 2.2.2 

and 2.2.3, respectively.

2.2.2 Density clustering 

In DCGS the densities are clustered into disjoint clusters using a 

binary divisive k-means clustering algorithm. The clustering is 

done such that every density is first placed in a single cluster 

whose mean is then calculated (average of the Gaussian means). 

The cluster is then split by perturbing the mean in opposite 

directions by a small amount and then reassigning the densities to 

the newly obtained means. K-means is then run for a few iterations 

and the clusters are split again. This procedure is repeated until a 

desired number of clusters is obtained.  The distance metric used in 

the clustering is the same as is used in the original GS scheme 

(Equation 1). 

During clustering a threshold was set such that any cluster, 

whose member count was below the aforementioned threshold, 

was not split. The use of the threshold resulted in the algorithm 

producing clusters with more even member counts than when the 

threshold was not used. This, in turn, means that the computational 

load is more predictable, as the number of clusters chosen for 

every frame is relatively constant (and every cluster has a similar 

number of cluster members). 

2.2.3  Density selection 

As mentioned before, since we are using disjoint clusters, more 

than one cluster needs to be selected for which to calculate the 

density probabilities. There are at least two ways of doing this. 

One possible way is to use a threshold-based selection such that all 

clusters are selected whose distance to the current feature vector is 

less than a certain threshold. This method is referred to as DCGS-

T. Another way is to pick the N clusters that are closest to the 

current feature vector. This will be referred to as DCGS-N. The 

distance measure used here is also the one in Equation 1. 

Notice that the number of likelihood calculations done per 

frame is controlled by either the N value (in DCGS-N) or the 

distance threshold (in DCGS-T). The N value and the threshold 

affect only the number of clusters that are chosen for likelihood 

calculation. Thus, it is easy to change them to increase or decrease 

the number of likelihood calculations done per frame, even on the 

fly, during decoding. This is not the case, however, in the original 

GS scheme, where neighborhoods are used. There the amount of 

likelihood calculations is controlled by the Θ value, which controls 

the size of the neighborhoods. This means that, when the Θ value 

is changed, the neighborhood members need to be calculated again 

to reflect the new Θ value. 

3. FRAME RATE REDUCTION AND FEATURE 

VECTOR MASKING 

In this section we describe two methods, frame rate reduction and 

feature vector masking, which also address the problem of costly 

density likelihood computation [3]. These methods have been 

found to decrease the computational complexity of the likelihood 

computation.
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Figure 1 Word error rate vs. the percentage of likelihoods calculated per frame for GS, DCGS-N and DCGS-T. 

3.1 Frame rate reduction 

Frame rate reduction [3] is a simple and effective way of reducing 

the computational complexity of the density likelihood 

calculations. When frame rate reduction is used, the likelihoods are 

calculated e.g., for every other frame and then used again for the 

following frame. The motivation behind this is the assumption that 

consecutive feature vectors do not differ very much from each 

other. Thus, the density likelihoods for consecutive frames will be 

similar. It is also possible to calculate the likelihoods only for 

every third, fourth, etc. frame. The recognition accuracy will, 

however, drop quite fast if the likelihoods are calculated for less 

than every third or fourth frame [3]. 

3.2 Feature vector masking 

The idea behind feature masking is that feature components 

contribute differently to the density likelihoods and the overall 

recognition performance [3]. It turns out that some components can 

be left out or masked altogether without affecting the recognition 

performance. The computational complexity is affected as the 

density likelihoods are calculated based on only the non-masked 

components. The masks can be determined, for example, by 

masking each feature component separately and checking the 

recognition performance for each such mask. The mask that is to 

be used is then created by combining the single component masks 

that affected the recognition performance the least. 

4. EXPERIMENTS 

4.1 Experimental setup 

The performance of the proposed DCGS scheme was tested on a 

medium vocabulary continuous speech recognition task. The task 

vocabulary was around 1000 words. The acoustic models used in 

the experiments were standard decision tree state-tied 3-state 

triphone HMMs with 16 densities per state. The total number of 

densities in the set was 26K. The models were trained on an in-

house training set containing continuous speech (US English). For 

the GS experiments, the densities were clustered into 128 

neighborhoods (GS) or 150 clusters (DCGS). These cluster and 

neighborhood counts were found to work best in previous 

experiments, not presented here. The language model used here 

was a bigram language model. 

The front-end used in the experiments was based on FFT-

derived Mel cepstral coefficients and their first and second order 

derivatives (39 components in total). Recursive mean removal was 

applied on all components of the resulting feature vectors, and the 

variance of the energy component and its derivatives was 

normalized to unity [6]. 

4.2 Experimental Results 

Figure 1, shows the word error rate achieved in the recognition 

experiments for the original GS scheme as well as for the proposed 

DCGS-N and DCGS-T schemes. The results for the original GS 

scheme were obtained by using 1.1, 1.3, 1.5, 1.7 and 2.3 for the Θ
values. For DCGS-N, the N-values used were 32, 40, 48, 56, 64 

and 72. The distance thresholds used in DCGS-T were 80, 90, 100 

and 120. As it can be seen, the GS and DCGS-N schemes perform 

nicely and also very much alike, with respect to word error rate 

and computational savings. DCGS-N gives a word error rate of 

9.43% at 34.6% of likelihoods computed while GS gives 

approximately the same word error rate at 29% of likelihoods 

calculated. DCGS-T, however, does not perform very well. The 

word error rate increases quite fast as the density threshold is 

tightened.

4.2.1 Frame rate reduction 

To see whether frame rate reduction could be used in conjunction 

with GS to provide further savings in computational complexity, 

the following tests were performed. First, the recognizer was run 

without GS, but with the density frame rate set to 2, which meant 

that the density likelihoods were calculated for every other frame 

and reused for the next frame. The word error rate in this 

experiment turned out to be 9.29%. By looking at Figure 1, it can 

be seen that, the same number of likelihood computations can be 

achieved by using GS such that the word error rate is around 9.2%. 

So, based on word error rate and computational complexity it 

would seem that using GS is a slightly better option than using 

frame rate reduction.

However, things look a bit different when both GS and frame 

rate reduction are applied simultaneously. Figure 2, shows the 

word error rates for the DCGS-N scheme (DCGS-N) and the 

10 20 30 40 50 60 70 80 90 100
8

9

10

11

12

Percentage of likelihoods computed

W
E

R
 /

 %

GS

DCGS-N

DCGS-T

I  183



DCGS-N scheme and frame rate reduction (DCGS-N+fr2). Note 

that in the figure the percentages of likelihoods calculated are 

relative to the case where no GS or frame rate reduction is used. 

Thus, when only frame rate reduction is enabled, the percentage is 

50. From the figure, it is evident that frame rate reduction provides 

additional savings in computation. The same word error rate 

(~9.4%) is achieved by the DCGS-N scheme at around 34% of 

likelihoods evaluated as for the DCGS-N+frame rate reduction 

scheme at 25% likelihoods evaluated. 

4.2.2 Feature masking 

The performance of feature masking was tested together with the 

DCGS-N scheme. Two different feature masks were tested, one 

with 9 components masked and another one with 13 components 

masked. The results are presented in Figure 3. The masking was 

done such that it was not applied to the cluster selection process. 

Only the density calculation was affected. From the figure, it can 

be seen, that when combining with DCGS, a 9-feature mask brings 

further savings in likelihood calculation, while the 13-feature mask 

does not. For the 13-component mask, the word error rate is 

already relatively high (9.55%) before applying DCGS-N. Note 

that the likelihood percentages in Figure 3 have the savings from 

the feature masking included in them. For example, setting N to 64 

results in 47.8% of the likelihoods to be computed, but when 9 out 

of the 39 components are masked the equivalent percentage is 

(47.8%*30/39=) 36.8%. 

5. CONCLUSIONS

In this paper, we examined the performance of a memory efficient 

Gaussian Selection algorithm intended for use in embedded ASR 

systems. The proposed algorithm performed nearly at the same 

level on a medium vocabulary continuous speech recognition task 

as the original Gaussian Selection algorithm but with significantly 

reduced memory requirements. The proposed algorithm was able 

to obtain a 66% complexity reduction in likelihood computation 

with only a 4.1% relative increase in word error rate. When 

applying frame rate reduction in addition to the proposed GS 

scheme, a 75% complexity reduction was obtained with the same 

relative increase in word error rate. Combining the proposed GS 

scheme with feature masking also provided additional savings. A 

complexity reduction of 68% was achieved with a 3.5% relative 

increase in word error rate. 
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Figure 2 Word error rate vs. the percentage of 

likelihoods calculated per frame for DCGS-N and 

DCGS-N combined with frame rate reduction. 
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Figure 3 Word error rate vs. the percentage of 

likelihoods calculated per frame for DCGS-N and 

DCGS-N combined with feature masking. 
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