
Gaussian Selection with Non-Overlapping Clusters for ASR in Embedded Devices

Jussi Leppänen and Imre Kiss

Multimedia Technologies Laboratory, Nokia Research Center

Tampere, Finland

ABSTRACT

In this paper we propose a memory efficient version of the

Gaussian Selection (GS) scheme, which is used for speeding up the

likelihood calculations of an ASR system. The memory savings are

achieved by using non-overlapping (disjoint) clusters instead of the

overlapping clusters normally used in GS. As we will show, the

new scheme achieves 66% computational savings with a relative

increase in word error rate (WER) of 4%. We will also show, that

combining the new GS scheme with frame rate reduction and

feature masking provides further savings in computation. 75% (4%

increase in WER) and 68% (3.5% increase in WER) savings were

obtained by adding frame rate reduction and feature masking,

respectively.

1. INTRODUCTION

As voice user interface technology is maturing, it is becoming a

more and more important input/output method for small, embedded

devices. Using a voice user interface is especially convenient when

the device is being used in situations where normal input methods

are not available.

For embedded devices, low memory and computational

complexity implementations of the ASR algorithms is very

important. Even though the computational power of embedded

devices in rising constantly, cost will always be an important

factor in designing mass-market products. Moreover, there will

always be an increasing amount of applications competing for the

same computational resources as the voice UI.

In a HMM based speech recognizer more than half of the

computational time can be spent in calculating the density

likelihoods. Thus, any decrease in density calculation time will

have an effect on the overall speed of the recognition algorithm.

Numerous efficient algorithms have been proposed that address

this problem. Using vector or scalar quantization of the acoustic

model parameters, for example, allows for the acoustic models to

be stored in a smaller amount of memory and for faster likelihood

calculation without affecting recognition performance [1,2]. In [3],

several techniques (feature component masking, variable rate

updating of feature components and density pruning) for reduced

complexity likelihood calculation are proposed. In [4], Gaussian

Selection (GS) is used to select a shortlist of Gaussians for which

to calculate accurate likelihoods, thus reducing computation.

In this paper, we look at a few of the above methods for

speeding up the process of calculating the density likelihoods.

More, specifically, we examine GS, for which we present here a

memory efficient implementation. We also look at how GS

performs in combination with frame rate reduction and feature

vector masking.

The rest of the paper is organized as follows. First, in Section

2.1, we will review GS. Then, in Section 2.2, we will introduce the

proposed memory efficient GS implementation. Section 3 we look

at two methods, frame rate reduction and feature vector masking,

which can also be used to reduce the computational complexity of

the likelihood computations. In Section 4 we show the results of

recognition experiments done using the original GS and the

proposed GS method. In addition we show how frame rate

reduction and feature masking work together with GS. Conclusions

are then finally drawn in Section 5.

2. ALGORITHM DESCRIPTIONS

2.1 Gaussian Selection

GS was first introduced by Bocchieri in [4] and is used to limit the

number of likelihood calculations needed during decoding. The

motivation in GS is that the likelihood of a feature vector can be

approximated accurately only when it does not land on the tail of a

Gaussian density [4]. Also, when the feature vector does land on

the tail of a Gaussian density, the likelihood will be small, and thus

it won’t contribute much to the state score. This implies that it

would be beneficial to determine quickly the subset of Gaussians

that the feature vector is not an outlier to, before the actual

likelihood calculation. The likelihoods of these Gaussians would

then be calculated and the likelihoods of the rest of the Gaussians

would be set to some small constant.

Gaussian densities are first grouped together into overlapping

neighborhoods. These neighborhoods are created by first applying

k-means clustering on the densities. The distance measure used in

the clustering is a weighted Euclidian distance metric:

(){ }
2

1

)()()(
1

),(
=

−=∂
d

k

jiji kkkw
d

µµµµ (1)

where d is the dimensionality of the feature vector, µi(k) is the

kth component of the mean of the ith Gaussian density and w(k) is a

weight equal to the kth diagonal element of the inverse square root

of the average of the covariances of the Gaussian in the acoustic

model set.

After clustering, the cluster centers are stored and a

neighborhood of Gaussians is determined for each of them. The

neighborhood of a cluster center comprises all Gaussians for which

the following equation holds:

()
Θ≤

−

=

d

i avg

m

iU

iic

d
1

2

)(

)()(1 µ
 (2)

where c(i) is the ith component of the cluster center, and Uavg(i)

is the ith diagonal component of the average of the covariance

matrices of the Gaussians in the model set. Θ is a threshold, which

controls the size of the neighborhood. It is also possible to use state

information during the neighborhood creation to obtain better

I 181142440469X/06/$20.00 ©2006 IEEE ICASSP 2006

performance, as described in [5]. In the experiments presented in

this paper, however, state information is not used during clustering.

During decoding, after a feature vector is obtained, the cluster

center that is closest to the feature vector is found Equation 1 is

used for the distance calculation by replacing µj with the current

feature vector. The likelihoods for the Gaussians that belong to the

neighborhood of this cluster center are then evaluated. The

likelihood of the other Gaussians is set to some small constant

value. The number of likelihoods that are calculated for every

frame is controlled by the threshold Θ (see Equation 2). The

smaller the Θ value, the less likelihoods are calculated which

results in reduced computational complexity. Setting Θ too low,

will however, result in lower recognition accuracies as too few

likelihoods are calculated.

2.2 Gaussian Selection with non-overlapping clusters

2.2.1 Motivation

While GS has been shown to reduce the computation needed for

the calculation of the density probabilities significantly, its use in

embedded devices might not be justified because of increased

memory requirements. The increased memory footprint needed for

GS is due to two factors. First, the cluster centers and the distance

weight need to be stored. The memory needed for these is however

usually negligible when compared to the memory needed to store

the actual densities. The number of neighborhoods ranges usually

from 64 to 512, while the number of densities in a triphone

acoustic model set might be several tens of thousands. Another

source for the increased memory footprint is due to the fact that the

neighborhood member information needs to be stored. The

memory needed for this information is quite high. Consider for

example an acoustic model set with 25K densities and 256

neighborhoods. Since each density may belong to any of the

neighborhoods, a 25,000 x 256 (1 bit elements) table that holds the

neighborhood member information needs to be stored along with

the models. This requires 800KB of memory. The size of a

subspace distribution clustered acoustic model set which uses 4-bit

quantization of the mean-variance value pairs requires about 600-

700KB [1]. This means that the GS information would more than

double the memory footprint of the acoustic models!

If, however, disjoint clusters were to be used instead of the

overlapping neighborhoods, the cluster member information would

require much less memory. This would be achieved by first

arranging the densities in the memory according to the cluster

membership information such that the densities belonging to the

first cluster are placed first and so on. Now, only a table with as

many elements as there are clusters would be needed. The

elements in the table would represent the indices of the first

density that belongs to the respective cluster.

As mentioned in [4], using disjoint clusters results in problems

when the feature vector lands near the edge of a cluster. When this

happens, the densities that are close to the feature vector but lie on

the ‘wrong side’ of the cluster border are not evaluated. This

problem can be mitigated by keeping the cluster sizes relatively

small (smaller than the neighborhoods) and picking several clusters

for evaluation instead of picking just the closest cluster.

Using disjoint clusters and picking more than one of them are

the main ideas of the GS scheme proposed in this paper. This new

scheme will be referred to as DCGS (disjoint cluster GS) for the

rest of the paper. The clustering procedure and the cluster selection

process done during decoding is explained next, in Sections 2.2.2

and 2.2.3, respectively.

2.2.2 Density clustering

In DCGS the densities are clustered into disjoint clusters using a

binary divisive k-means clustering algorithm. The clustering is

done such that every density is first placed in a single cluster

whose mean is then calculated (average of the Gaussian means).

The cluster is then split by perturbing the mean in opposite

directions by a small amount and then reassigning the densities to

the newly obtained means. K-means is then run for a few iterations

and the clusters are split again. This procedure is repeated until a

desired number of clusters is obtained. The distance metric used in

the clustering is the same as is used in the original GS scheme

(Equation 1).

During clustering a threshold was set such that any cluster,

whose member count was below the aforementioned threshold,

was not split. The use of the threshold resulted in the algorithm

producing clusters with more even member counts than when the

threshold was not used. This, in turn, means that the computational

load is more predictable, as the number of clusters chosen for

every frame is relatively constant (and every cluster has a similar

number of cluster members).

2.2.3 Density selection

As mentioned before, since we are using disjoint clusters, more

than one cluster needs to be selected for which to calculate the

density probabilities. There are at least two ways of doing this.

One possible way is to use a threshold-based selection such that all

clusters are selected whose distance to the current feature vector is

less than a certain threshold. This method is referred to as DCGS-

T. Another way is to pick the N clusters that are closest to the

current feature vector. This will be referred to as DCGS-N. The

distance measure used here is also the one in Equation 1.

Notice that the number of likelihood calculations done per

frame is controlled by either the N value (in DCGS-N) or the

distance threshold (in DCGS-T). The N value and the threshold

affect only the number of clusters that are chosen for likelihood

calculation. Thus, it is easy to change them to increase or decrease

the number of likelihood calculations done per frame, even on the

fly, during decoding. This is not the case, however, in the original

GS scheme, where neighborhoods are used. There the amount of

likelihood calculations is controlled by the Θ value, which controls

the size of the neighborhoods. This means that, when the Θ value

is changed, the neighborhood members need to be calculated again

to reflect the new Θ value.

3. FRAME RATE REDUCTION AND FEATURE

VECTOR MASKING

In this section we describe two methods, frame rate reduction and

feature vector masking, which also address the problem of costly

density likelihood computation [3]. These methods have been

found to decrease the computational complexity of the likelihood

computation.

I 182

Figure 1 Word error rate vs. the percentage of likelihoods calculated per frame for GS, DCGS-N and DCGS-T.

3.1 Frame rate reduction

Frame rate reduction [3] is a simple and effective way of reducing

the computational complexity of the density likelihood

calculations. When frame rate reduction is used, the likelihoods are

calculated e.g., for every other frame and then used again for the

following frame. The motivation behind this is the assumption that

consecutive feature vectors do not differ very much from each

other. Thus, the density likelihoods for consecutive frames will be

similar. It is also possible to calculate the likelihoods only for

every third, fourth, etc. frame. The recognition accuracy will,

however, drop quite fast if the likelihoods are calculated for less

than every third or fourth frame [3].

3.2 Feature vector masking

The idea behind feature masking is that feature components

contribute differently to the density likelihoods and the overall

recognition performance [3]. It turns out that some components can

be left out or masked altogether without affecting the recognition

performance. The computational complexity is affected as the

density likelihoods are calculated based on only the non-masked

components. The masks can be determined, for example, by

masking each feature component separately and checking the

recognition performance for each such mask. The mask that is to

be used is then created by combining the single component masks

that affected the recognition performance the least.

4. EXPERIMENTS

4.1 Experimental setup

The performance of the proposed DCGS scheme was tested on a

medium vocabulary continuous speech recognition task. The task

vocabulary was around 1000 words. The acoustic models used in

the experiments were standard decision tree state-tied 3-state

triphone HMMs with 16 densities per state. The total number of

densities in the set was 26K. The models were trained on an in-

house training set containing continuous speech (US English). For

the GS experiments, the densities were clustered into 128

neighborhoods (GS) or 150 clusters (DCGS). These cluster and

neighborhood counts were found to work best in previous

experiments, not presented here. The language model used here

was a bigram language model.

The front-end used in the experiments was based on FFT-

derived Mel cepstral coefficients and their first and second order

derivatives (39 components in total). Recursive mean removal was

applied on all components of the resulting feature vectors, and the

variance of the energy component and its derivatives was

normalized to unity [6].

4.2 Experimental Results

Figure 1, shows the word error rate achieved in the recognition

experiments for the original GS scheme as well as for the proposed

DCGS-N and DCGS-T schemes. The results for the original GS

scheme were obtained by using 1.1, 1.3, 1.5, 1.7 and 2.3 for the Θ
values. For DCGS-N, the N-values used were 32, 40, 48, 56, 64

and 72. The distance thresholds used in DCGS-T were 80, 90, 100

and 120. As it can be seen, the GS and DCGS-N schemes perform

nicely and also very much alike, with respect to word error rate

and computational savings. DCGS-N gives a word error rate of

9.43% at 34.6% of likelihoods computed while GS gives

approximately the same word error rate at 29% of likelihoods

calculated. DCGS-T, however, does not perform very well. The

word error rate increases quite fast as the density threshold is

tightened.

4.2.1 Frame rate reduction

To see whether frame rate reduction could be used in conjunction

with GS to provide further savings in computational complexity,

the following tests were performed. First, the recognizer was run

without GS, but with the density frame rate set to 2, which meant

that the density likelihoods were calculated for every other frame

and reused for the next frame. The word error rate in this

experiment turned out to be 9.29%. By looking at Figure 1, it can

be seen that, the same number of likelihood computations can be

achieved by using GS such that the word error rate is around 9.2%.

So, based on word error rate and computational complexity it

would seem that using GS is a slightly better option than using

frame rate reduction.

However, things look a bit different when both GS and frame

rate reduction are applied simultaneously. Figure 2, shows the

word error rates for the DCGS-N scheme (DCGS-N) and the

10 20 30 40 50 60 70 80 90 100
8

9

10

11

12

Percentage of likelihoods computed

W
E

R
 /

 %

GS

DCGS-N

DCGS-T

I 183

DCGS-N scheme and frame rate reduction (DCGS-N+fr2). Note

that in the figure the percentages of likelihoods calculated are

relative to the case where no GS or frame rate reduction is used.

Thus, when only frame rate reduction is enabled, the percentage is

50. From the figure, it is evident that frame rate reduction provides

additional savings in computation. The same word error rate

(~9.4%) is achieved by the DCGS-N scheme at around 34% of

likelihoods evaluated as for the DCGS-N+frame rate reduction

scheme at 25% likelihoods evaluated.

4.2.2 Feature masking

The performance of feature masking was tested together with the

DCGS-N scheme. Two different feature masks were tested, one

with 9 components masked and another one with 13 components

masked. The results are presented in Figure 3. The masking was

done such that it was not applied to the cluster selection process.

Only the density calculation was affected. From the figure, it can

be seen, that when combining with DCGS, a 9-feature mask brings

further savings in likelihood calculation, while the 13-feature mask

does not. For the 13-component mask, the word error rate is

already relatively high (9.55%) before applying DCGS-N. Note

that the likelihood percentages in Figure 3 have the savings from

the feature masking included in them. For example, setting N to 64

results in 47.8% of the likelihoods to be computed, but when 9 out

of the 39 components are masked the equivalent percentage is

(47.8%*30/39=) 36.8%.

5. CONCLUSIONS

In this paper, we examined the performance of a memory efficient

Gaussian Selection algorithm intended for use in embedded ASR

systems. The proposed algorithm performed nearly at the same

level on a medium vocabulary continuous speech recognition task

as the original Gaussian Selection algorithm but with significantly

reduced memory requirements. The proposed algorithm was able

to obtain a 66% complexity reduction in likelihood computation

with only a 4.1% relative increase in word error rate. When

applying frame rate reduction in addition to the proposed GS

scheme, a 75% complexity reduction was obtained with the same

relative increase in word error rate. Combining the proposed GS

scheme with feature masking also provided additional savings. A

complexity reduction of 68% was achieved with a 3.5% relative

increase in word error rate.

6. ACKNOWLEDGEMENTS

This work has partially been funded by the European Union under

the integrated project TC-STAR - Technology and Corpora for

Speech-to-Speech Translation - (IST-2002-FP6-506738,

http://www.tc-star.org).

7. REFERENCES

[1] E. Bocchieri, and B. Mak, “Subspace Distribution Clustering

for Continuous Observation Density Hidden Markov Models,” in

Proceedings of the 5th European Conference on Speech

Communication Technology, vol. 1, pp.107-110, 1997.

[2] M. Vasilache, “Speech Recognition Using HMMs with

Quantized Parameters,” in Proceedings of Eurospeech 2001,

Aalborg, Denmark, vol. 2, pp. 1265-1268, 2001.

[3] I. Kiss, and M. Vasilache, “Low Complexity Techniques for

Embedded ASR Systems,” in Proceedings of ICSLP 2002, Denver,

Colorado, USA, pp. 1593-1596, 2002.

[4] E. Bocchieri, “Vector Quantization for Efficient computation

of continuous density likelihoods,” in Proceedings of ICASSP

1993, Minneapolis, MN, USA, vol. 2, pp. II-692 – II-695, 1993.

[5] M. J. F. Gales, K. M. Knill, and S. J. Young, “State-Based

Gaussian Selection in Large Vocabulary Continuous Speech

Recognition Using HMM’s,” IEEE Transactions on Speech and

Audio Processing, vol. 7, no. 2, March 1999.

[6] O. Viikki, D. Bye, and K. Laurila, “A Recursive

Feature Vector Normalization Approach for Robust Speech

Recognition in Noise,” in Proceedings of ICASSP 1998,

Seattle, Washington, USA, pp. 1692-1695, 1998.

Figure 2 Word error rate vs. the percentage of

likelihoods calculated per frame for DCGS-N and

DCGS-N combined with frame rate reduction.

0 10 20 30 40 50
9

9.5

10

10.5

Percentage of likelihoods computed

W
E

R
 /

 %

DCGS-N

DCGS-N+fr2

20 30 40 50 60 70 80
9

9.5

10

Percentage of likelihoods computed

W
E

R
 /

 %

DCGS-N

DCGS-N+mask9

DCGS-N+mask13

Figure 3 Word error rate vs. the percentage of

likelihoods calculated per frame for DCGS-N and

DCGS-N combined with feature masking.

I 184

