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ABSTRACT

Name recognition is an important application of automatic speech
recognition in embedded devices. Since embedded devices are
used in diverse environments, noise robustness is very important.
Moreover, unlike normal computer-based speech recognition ap-
plications, embedded speech recognition must deal with prob-
lems arising from limited resources. Facing these challenges, we
have developed environment compensation and acoustic model-
ing techniques that improve robustness and accuracy of a speaker-
independent name recognition system in hands-free conditions.
These techniques are efficient to implement and are effective for
performance improvement. On a name recognition task, we ob-
served more than 53% word error rate reduction, compared to a
baseline system. These improvements were obtained with mini-
mal increase of resources.

1. INTRODUCTION

With the widespread use of mobile devices, automatic speech
recognition (ASR) in embedded systems has become one of the
major research and development areas for easy-to-use human ma-
chine interfaces. Since mobile devices are portable, ASR systems
in such devices have to be robust and accurate in adverse acoustic
environments. Likewise, due to limited computation and memory
resources, these systems must be designed specifically to accom-
modate these limitations.

This paper describes compensation and acoustic modeling
techniques in an ASR system for mobile applications. Compensa-
tion aims at reducing mismatch between trained acoustic models
and real world testing speech signals. The mismatch is usually
caused by background noise, for example, wind and car engine
noise, and convolutive channel distortion such as hand-held ver-
sus hands-free microphones. Since the mismatch is subject to
frequent change in mobile applications, it is critical to adaptively
compensate the effects of the mismatch. Pursuing practical yet
powerful compensation methods, our lab in the past has proposed
a JAC method [1]. The method adapts mean vectors of acoustic
models via a parametric mismatch function. To adaptively com-
pensate frequently changing environmental distortion, a dynamic
updating scheme is used in the method. However, performance of
the method may be limited, especially in high noise levels. This
paper presents an improved method, denoted as IJAC (Improved
method of Joint compensation of Additive and Convolutive dis-
tortions) that modifies dynamic updating formulae to better deal

with high noise levels. The modification is shown to reduce word
error rate (WER) by 29%, compared to the JAC method.

Another key component in ASR systems is acoustic models.
The widely used hidden Markov model (HMM) for acoustic mod-
eling uses Gaussian mixtures to approximate the probability den-
sity functions (PDFs) of speech observations. To achieve high
accuracy, HMMs are usually trained to be context dependent and
have a large number of Gaussian PDFs. However, an embedded
ASR system requires minimizing the number of Gaussian PDFs
to conserve memory resources and computation. This paper de-
scribes a generalized tied mixture (GTM) scheme that effectively
improves performance without increasing the number of Gaussian
PDFs. Used together with the IJAC method, we observed more
than 53% WER reduction compared to a baseline system.

2. THE COMPENSATION METHOD

Our compensation method belongs to model-space methods [1–3]
that transform acoustic model parameters through a parametric
function. Compared to feature-space methods such as speech
enhancement, model-space methods usually yield better perfor-
mance. Since model-space methods require fewer adaptation ut-
terances for reliable transformation, they are more widely used for
mobile applications, compared to some regression methods [4].
In the following, we briefly introduce the JAC method [1] and
describe some improvements on it.

2.1. Environment compensation

We assume that noisy cepstral observation Y (k) at time k is con-
ditionally dependent on clean speech X(k), background noise
N(k), and channel distortion H(k). The clean speech cepstral
observation X(k) is assumed to be generated from a Gaussian
PDF N (·; µqp, Σqp) with mean vector µqp and diagonal covari-
ance matrix Σqp at mixture p of state q. The PDF p has weight
wqp at state q of an HMM ΛX .

Denote the log-spectral domain as superscript l. It is reason-
able to assume that, within one utterance, environmental distor-
tions, N l(k) and Hl(k), are stationary. Denote their mean vec-
tors in an utterance as ΛN = (N l, H l). We further assume a
parametric mismatch function g(·) of environmental distortion of
the clean speech mean vector as [1, 2]

µ̂qp = Cg(µl
qp, H l, N l), (1)

where the parametric function g(·) is g(Xl, H l, N l) = log(exp(Xl+
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Hl)+exp(N l)). C denotes the Cosine transformation. The like-
lihood of the noisy observation is therefore p(Y (k)|qp, ΛN , ΛX) =

N (Y (k); µ̂qp, Σ̂qp) for state q and mixture p 1. In the following,
we use G to denote g(µl

qp, H l, N l).

2.2. Dynamic environment estimation process and its improve-
ments

The objective of the improved method is to estimate the distortion
ΛN and to compensate its effect on clean speech models. Since
ΛN is subject to change between utterances, a dynamic estimation
process is necessary. Denote the estimate in utterance u as Λ

(u)
N =

(N l(u), H l(u)). The cost function for EM estimation of Λ
(u)
N is

Q(Λ
(u)
N |Λ̄(u)

N ) =
P

c,k,q,p γ
(c)
qp (k) log p(Y (c)(k)|qp, Λ

(c)
N , ΛX),

which is proportional to − 1
2

P
c,k

P
qp γ

(c)
qp (k) 1

Σ̂
(c)
qp

(Y (c)(k) −
µ̂

(c)
qp )2. γ

(c)
qp (k) is the posterior probability of being at state q and

mixture p at frame k of utterance c. The compensation method it-
erates between obtaining the posterior probabilities given Λ̄c

N es-
timated from the previous utterances and updating Λ

(u)
N by max-

imizing the above cost function 2 for the current utterance u. In
the following, we use Q to denote Q(Λ

(u)
N |Λ̄(u)

N ).
Background noise N l is estimated by averaging non-speech

frames of the current utterance. On the contrary, channel distor-
tion usually varies less between utterances. Based on this obser-
vation, Newton’s method is implemented for segmental updating
of channel distortion in the JAC method [1], which involves the
first- and second-order differentials of the cost function. Denote
the first- and second-order differentials as ∆HlQ and ∆2

HlQ. Di-
rect calculation of the differentials involves transformations of
variance Σ̂

(u)
qp between cepstral and log-spectral domain, which

is computationally costly for mobile devices. To minimize imple-
mentation costs, the JAC method [1] adopted simplified differen-
tials as

∆Hl(u)Q = −
X

c,k,q,p

γ(c)
qp (k)[G − C−1Y (c)(k)], (2)

∆2
Hl(u)Q = −

X
c,k,q,p

γ(c)
qp (k)∆HlG, (3)

where ∆HlG =
exp(Hl(u)+µl

qp)

exp(Hl(u)+µl
qp)+exp(Nl(u))

is obtained by refer-

ring to the parametric function g(·).
In this paper, we propose using the following simplified dif-

ferentials of the cost function to achieve low computational costs
and improved channel estimates.

∆Hl(u)Q = −
X

c,k,q,p

γ(c)
qp (k)∆HlG

h
G − C−1Y (c)(k)

i
(4)

∆2
H(u)Q = −

X
c,k,q,p

γ(c)
qp (k)[(∆HlG)2 (5)

+(G − C−1Y (c)(k))∆2
HlG],

where ∆2
HlG is the second-order differential of the parametric

function g(·).
We may relate the proposed differential formulae with those

in the JAC method [1] as

1Usually the new variance Σ̂qp differs from the original Σqp.
2A forgetting factor ρ ∈ (0, 1.0] may be introduced to force parameter

updating with more emphasis on recent utterances.

• removal of ∆HlG from Eqs. (4) and (5),

• and assumption of exp(N l(u)) � exp(Hl(u) + µl
qp), i.e.,

additive noise power is much smaller than channel dis-
torted speech power.

Because, in fact, the above assumption may not be valid, com-
pensation by Eqs. (4) and (5) may perform better than JAC [1]
particularly in high noise levels. We will confirm the statement
through experiments in section 4.

Since mobile devices have constrained resource requirements,
it is critical to verify that any improvement does not increase re-
source requirements significantly. Compared to the JAC method [1],
the new method introduces approximately 5 more multiplications
per mixture in Eqs. (4) and (5). Relative increase of compu-
tational costs is in fact very low, since 1) fixed-point DSP pro-
cessors usually incorporate a hardware multiplier so that addition
and multiplication can be completed in one CPU cycle, and 2) the
differentials can be carried out only with the state-aligned models
such that the actual number of involved HMMs is equal to just the
length of the current utterance.

3. THE ACOUSTIC MODELING TECHNIQUE

As discussed in section 1, it is important to improve ASR perfor-
mance without increasing the number of Gaussian PDFs in acous-
tic models. It is known that, given the same number of Gaussian
PDFs, context-dependent acoustic models usually perform better
than monophone models. Our baseline system uses intra-word
triphones with a selected number of Gaussian PDFs for acous-
tic modeling. We developed the baseline HMM set such that,
given the number, the single mixture per state system performed
better than other systems with fewer states but larger number of
PDFs per state. The observation suggested that we should design
a training method that does not lose context-dependency details
of the single mixture system.

The GTM scheme proposed in this paper employs a two-stage
process to train HMMs. The first stage does the usual state-tying
to train triphone models. State tying is achieved by the normal
decision-tree-based state clustering. Triphone states are clustered
according to their answers to questions in a phonetic binary tree
with yes/no phonetic questions. A threshold is set to allow a cer-
tain depth of growing the decision tree to leaves that specify rele-
vant contexts. We chose a threshold such that the single-mixture
model achieved the highest performance.

In the second stage, Gaussian PDFs trained after state-tying
are pooled together and eventually shared among different states
and HMMs. The second stage in essence bootstraps the first stage.
We use a statistic measure, the Bhattacharyya distance, to provide
distances among PDFs; i.e. the distance between two Gaussian
PDFs {Ni(·; µi, Σi); i = 1, 2} is

D(N1,N2) =
1

8
(µ1−µ2)

2(
Σ1 + Σ2

2
)−1+

1

2
ln

(Σ1 + Σ2)/2

‖Σ1‖1/2‖Σ2‖1/2

Given a PDF, sharing of PDFs can be done among Gaussian PDFs
with the shortest distances to the given PDF. The idea of PDF
sharing is illustrated in Fig. 1, where sharing of PDFs is among
similar phones such as ax and er. Ability to discriminate phones
is attained by 1) using different mixture weights, and 2) sharing
different mixture PDFs with other states.

After the above process, each state of the HMMs has M
Gaussian PDFs but the total number of Gaussian PDFs is kept
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ax er

Fig. 1. Sharing Gaussian PDFs between ax and er.

unchanged. HMMs are then re-trained with flat initialization of
mixture weights. Then, training is done on these mixture weights
and transition probabilities. Finally, all HMM parameters are
re-trained with several iterations of the Baum-Welch EM algo-
rithm [5].

The GTM process is different from some alternative mixture
tying methods. Compared to a pure mixture tying system such
as semi-continuous HMM [6], the GTM-HMM uses state tying
to preserve the state identity. Compared to the sole state tying
system [7], such models share Gaussian PDFs across states even
though these states may belong to different models. Instead of
using phonetic knowledge to tie mixture PDFs such as that in [8],
GTM uses a statistic measure which may “break” the constraint
set by the phonetic knowledge. For example, using the GTM pro-
cess, Gaussian PDFs in a speech HMM may be shared together
with those PDFs in a silence model.

4. EXPERIMENTAL RESULTS

4.1. Database and baseline performance

Our ASR system was tested on a hands-free speech recognition
database. The database was recorded in vehicles, using an AKG
M2 hands-free distant talking microphone, in three recording ses-
sions: parked (car parked, engine off), city-driving (car driven on
a stop and go basis), and highway (car driven on a highway). In
each session, 20 speakers (10 male/female) read 120 pairs of En-
glish first and last names. The database was sampled at 8 kHz,
with frame rate of 20 ms. From the input speech, 10-dimensional
MFCC features, together with their first-order differentials, were
derived. The Wall Street Journal (WSJ) database was used to train
the acoustic models. The baseline used the JAC method for en-
vironment compensation and single-mixture per state triphones
for acoustic modeling. The average WER over the three driving
conditions was 3.2%.

Further performance improvements must handle the follow-
ing mismatches. First, the microphone is distant talking and band-
limited in the database, compared to the high-quality microphone
used to collect the WSJ database. Second, there is a substantial
amount of background noise in cars, with SNR decreasing to 0dB
in the highway condition. Third, utterances in the WSJ database
are more continuous than the name utterances in the database.

4.2. Channel distortion estimates

We show in this section that the IJAC method has more reliable
channel estimates than those of the JAC method. Figures 2 and
3 plot the mean and standard deviation of the estimated Hl by
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Fig. 2. Mean of channel distortion estimates averaged over all
testing utterances.
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Fig. 3. Standard deviation of channel distortion estimates aver-
aged over all testing utterances.

IJAC in the three driving conditions, averaged over each condi-
tion, together with those for the JAC method. From Fig. 2, we
observe that, given a method, the estimates in different driving
conditions are generally in agreement. However, Fig. 3 shows that
the estimation variance of these methods are different. Whereas
these two methods had similar estimation variances in higher fre-
quency, they performed differently in lower frequency. Particu-
larly, in highway and city-driving conditions, estimation variance
of JAC was much larger than that in the parked condition. On the
contrary, the IJAC method performed stably without much differ-
ence in estimation variances for the three driving conditions.

4.3. Recognition results

The IJAC method was compared to JAC 3 and MLLR [4]. Diago-
nal linear transformation matrices in MLLR were clustered using
a binary phonetic tree. Forgetting factor ρ was set to 0.6 in both
JAC and IJAC. Acoustic models were trained by the GTM pro-
cess in section 4.4 with M = 10. The recognition results are
summarized in Table 1. We observe that

• Without noise robustness techniques, the system perfor-
mance degraded severely under the noisy environments found

3JAC performed better than PMC [2] in [1]. We therefore did not
include results of PMC in this paper.
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in the testing database. We found that most of the errors
occurred in high noise levels.

• MLLR effectively improved noise robustness. Compared
to the system “W/O compensation”, WER decreased to
22.7%. The average of the three driving conditions indi-
cates relative WER reduction was 50%.

• In mobile applications of ASR, the JAC method was more
effective than MLLR. Using JAC, we further decreased
WER to 2.1%, corresponding to 90% WER reduction av-
eraged over the three driving conditions. Careful analy-
sis of the experimental results showed that much of the
performance improvement was achieved in the highway
driving condition. We found that, due to high noise levels
and frequent change of environments in the highway driv-
ing condition, it was very difficult for MLLR to reliably
estimate a set of linear transformations for environment
compensation. On the contrary, the estimation of back-
ground noise N l(u) and channel distortion Hl(u) in JAC
performed more stably than the estimation of linear trans-
formations in MLLR. In the highway driving condition, we
observed more than 92% relative WER reduction.

• Whereas the JAC algorithm substantially reduced WERs
compared to “MLLR” and “W/O compensation”, in all
driving conditions, IJAC performed even better. The aver-
aged WER decreased to 1.5%, corresponding to 29% rel-
ative WER reduction. We analyzed relative WER reduc-
tions in each of the driving conditions, and found that the
relative WER reduction was more than 30% in the high-
way condition. The results clearly show that IJAC is very
effective in compensating environment distortions.

Table 1. WER (in %) achieved by different methods on the hands-
free task.

Methods WER (in %)
W/O compensation 45.1

MLLR 22.7
JAC 2.1
IJAC 1.5

4.4. Acoustic modeling

This section presents results with the improved acoustic modeling
technique described in section 3. We varied M , the number of
sharable Gaussian PDFs per state, but kept the total number of
Gaussian PDFs unchanged. Table 2 shows the results of the GTM
process. We observe that, generally, larger M can decrease WER
relative to that with M = 1. For example, using M = 10, we
decreased WER from 2.2% by M = 1 to 1.5%, providing 31%
relative WER reduction. We conducted careful analysis and found
that such performance improvement was in particular consistent
in the highway condition. We also compared the GTM process
with other training schemes [8] and found that it performs better
especially with larger M [9].

Referring to Tables 1 and 2, we observe significant perfor-
mance improvement relative to our baseline system described in
section 4.1. More than 53% WER reduction was achieved by

Table 2. WER (in %) achieved by the GTM process with different
M on the hands-free task.

M = 1 2 4 10
WER (in %) 2.2 2.0 1.7 1.5

combining the improved compensation and acoustic modeling tech-
niques. Notice that the improvement was obtained without much
increase of computation resources and foot-print.

5. CONCLUSIONS

We have presented in this paper improved methods of environ-
ment compensation and acoustic modeling. These methods aim
at robust and accurate name recognition for mobile applications.
Since embedded devices require limited resources, these meth-
ods are designed carefully to keep computation low and minimize
foot-print. On a hands-free name recognition task, we obtained
significant performance improvements using these improved meth-
ods, compared to a baseline system.
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