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ABSTRACT

Soft-feature based speech recognition, which is an example of un-

certainty decoding, has been proven to be a robust error mitigation
method for distributed speech recognition over wireless channels ex-

hibiting bit errors. In this paper we extend this concept to packet-

oriented transmissions. The a posteriori probability density function

of the lost feature vector, given the closest received neighbours, is
computed. In the experiments, the nearest frame repetition, which

is shown to be equivalent to the MAP estimate, outperforms the

MMSE estimate for long bursts. Taking the variance into account

at the speech recognition stage results in superior performance com-
pared to classical schemes using point estimates. A computationally

and memory efficient implementation of the proposed packet loss

compensation scheme based on table lookup is presented.

1. INTRODUCTION

In a distributed speech recognition (DSR) scenario, the speech fea-

tures computed at the client side, often a mobile device, are transmit-
ted in some digital form over a communication channel to the remote

speech recognition server.

A major research focus in recent years has been to overcome
the degradation of speech recognition performance due to the un-

avoidable transmission errors. Several techniques, like interleaving

and forward error correction at the client or splicing, repetition, in-

terpolation at the server, have been proposed to mitigate the errors
[1]. More elaborate algorithms [2], [3] attempt to utilize the chan-

nel reliability information and the inherent redundancy of the source

to provide a so called soft-feature, consisting of a point estimate of

the transmitted feature and the uncertainty about the estimation. The

concealment of unreliable features occurs in the speech decoder by
applying missing feature theory [4], weighted Viterbi decoding [5]

or uncertainty decoding [6], the complement of Bayesian Predictive

Classification (BCP) in the feature space [7].

In this paper we focus on obtaining the soft-features in a packet-

switched communication scenario and effectively using them in the

subsequent speech decoder. In the next section we present the gen-

eral soft-feature framework for a continuous density HMM system.
In Section 3 is shown how soft features can be computed for DSR

over packet channels. A fast table lookup implementation is de-

scribed in the Section 4. We show in Section 5 the experimental

results obtained by our method on the Aurora 2 task and finish by
drawing some conclusions in Section 6.

2. UNCERTAINTY DECODING

In a continuous density HMM system, the output distributions are

represented by Gaussian mixture densities. For a given observation

xn at the time n, the output probability of the state s is expressed
by:

p(xn|s) =

NMX
m=1

csmN (xn; µsm, Σsm) (1)

Here NM is the number of Gaussians in the mixture and csm are

the mixture weights.

In a DSR system, the feature vector xn generated by the front-
end is not known at the server due to transmission errors. Let ζ

denote the observations at the server side, which consist of a possibly

corrupted version of xn and future and past received feature vectors.

The output probability p(xn|s) of (1) now has to be replaced by:

Z
X

p(xn|s)p(xn|ζ)dxn (2)

i.e. the expected value of p(xn|s), where the expectation is

taken with respect to the a posteriori probability p(xn|ζ). This ap-
proach has been termed ”uncertainty decoding” in [6].

However, the evaluation of the integral in the speech decoder

for each state and observation vector is often beyond the available
computing power. Some simplifying assumptions are necessary, al-

though at the price of loosing optimality.

In our approach presented in [3], the posterior density was ap-

proximated by a Gaussian distribution N (xn; µxn|ζ ,Σxn|ζ), al-

lowing to rewrite expression (2) as:

MX
m=1

csmN (µxn|ζ ; µsm,Σsm + Σxn|ζ) (3)

Comparing this with equation (1) we observe that the covariance

of the state output probability is increased by Σxn|ζ , the covariance

of the posterior density, and that it is evaluated at µxn|ζ , the mean

of the posterior density.

For an error free transmission Σxn|ζ is zero, denoting high reli-

ability, and the observation probability does not change. For a com-
pletely corrupted transmission Σxn|ζ is very high and the posterior

density becomes flat. The result of the integration (2) tends to be

independent of HMM state in this case. Consequently, the contribu-

tion of this feature to the discrimination between acoustic models is
reduced.
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3. APPLICATION TO PACKET CHANNELS

3.1. Computation of posteriori probabilities

Let xn be one component of the multidimensional feature vector xn

at the time n. In the front-end the value is quantized to the nearest

centroid c(i), which is coded into a bit pattern bn of length M . We

write for clarity bn = b
(i)
n to denote that bn represents the i-th

centroid, i = 1, . . . , 2M . In the followings we consider that knowing

p(b
(i)
n |ζ) suffices to obtain the continuous-valued p(xn|ζ).
The transmission of the bit pattern is modeled by an equivalent

channel with input b
(i)
n and output b̂n, characterized by the trans-

mission probabilities P (b̂n|b
(i)
n ). The prominent error pattern is

considered to be packet loss. This means that either a packet is re-

ceived, and then it is known to be error free:

P (b̂n|b
(i)
n ) = P (b(i)

n |b̂n) =

(
1, if b̂n = b

(i)
n

0, if b̂n �= b
(i)
n

(4)

or it is lost, which means that:

P (b̂n|b
(i)
n ) =

1

2M
(5)

We assume that the source is a Markov process, i.e.

P (bn|bn−1,bn−2, . . .) = P (bn|bn−1). Let us isolate a sequence

of received bit patterns B̂ = (b̂0, . . . , b̂N+1) of which we know that

the first b0 = b
(s)
0 and last bN+1 = b

(e)
N+1 transmitted bit patterns

have passed the channel uncorrupted. Considering ζ = B̂, the com-

putation of the a posteriori probability P (b
(i)
n |B̂), n = 1, . . . , N

can be accomplished by the forward-backward recursion [8]:

P (b(i)
n |B̂) =

α
(i)
n β

(i)
nP2M

j=1 α
(j)
n β

(j)
n

(6)

where i = 1, . . . , 2M and

α
(i)
n = P (b(i)

n |b̂0, . . . , b̂n) (7)

β
(i)
n = P (b̂n+1, . . . , b̂N+1|b

(i)
n ). (8)

Both, α
(i)
n and β

(i)
n can be computed recursively:

1. Initialization: n := 0

α
(i)
0 = P (b̂0|b

(i)
0 ) =

j
1, if i = s
0, if i �= s

(9)

2. Recursion: for n = 1 : N

α
(i)
n =

2
4 2MX

j=1

α
(j)
n−1P (b(i)

n |b(j)
n−1)

3
5 P (b̂n|b

(i)
n ) (10)

Similarly, starting the recursion from the other end we obtain the
backward probabilities.

1. Initialization: n := N + 1

β
(i)
N+1 = 1 (11)

2. Recursion: for n = N : 1

β
(i)
n =

2MX
j=1

P (b
(j)
n+1|b

(i)
n )P (b̂n+1|b

(j)
n+1)β

(j)
n+1 (12)

The a priori probabilities P (b
(j)
n |b(i)

n−1) have been estimated in
advance on a training speech database [3].

3.2. Matrix formulation of the forward-backward algorithm

In this section we give an efficient matrix formulation of the forward-

backward algorithm. First define the row vector of size 2M :

α0 = P (b̂0|b
(i)
0 ) = (0, 0, . . . , 0, 1, 0, . . . , 0) (13)

which consist of zeros except for P (b̂0|b
(s)
0 ) = 1 at s-th position.

Similarly define the row vector:

βN+1 = (0, 0, . . . , 0, 1, 0, . . . , 0) (14)

of the same size as α0, where 1 is now at the e-th position. Further
define the (2M × 2M )-dimensional matrix of a priori probabilities

A, where the element on the i-th row and j-th column is (A)ij =

P (b
(j)
n |b(i)

n−1).

Noting that (5) holds for the duration of the burst, n = 1, . . . , N ,

and that (4) holds for n = 0 and n = N + 1, (10) and (12) can

be simplified, and the forward-backward probabilities can now be
computed as follows (n = 1, . . . , N ):

αn = αn−1 · A = α0 ·An
(15)

βn = βn+1 ·AT = βN+1 · (AN−n+1)T
(16)

Since A consists of a priori probabilities, An can be computed

in advance and stored, thus saving a lot of computations during run-

time. Although this seems to come at the price of increased memory

demands, we will show in the following how this can be avoided.

3.3. Mutual information

A closer look at equation (15) reveals that (Ak)ij = P (b
(j)
n |b(i)

n−k).

Table 1 gives the mutual information I(bn;bn−k) = H(bn) −
H(bn|bn−k), where H(bn) denotes the entropy of the bit pattern
bn. I(bn;bn−k) is a measure of the information about bn, that is

contained in bn−k and thus indicates whether it is useful to utilize

bn−k for the reconstruction of bn. The values have been obtained

using the ETSI front-end on the Aurora 2 training set. Note that ETSI
standard uses split vector quantization and each subvector (sv1,...,7)

is coded separately into a bit pattern. It can be seen that I(bn;bn−k)
tends to zero as k increases. This means that there is a depth L
for which H(bn|bn−k) � H(bn) for k ≥ L. Note that if the
conditional entropy equals the unconditional, the rows of Ak become

constant [9, p.161].

Table 1. Entropies and mutual information among the bn and bn−k

produced by the ETSI advanced DSR front-end.
Subvector sv1 sv2 sv3 sv4 sv5 sv6 sv7

M 6 6 6 6 6 5 8

H(bn) 5.8 5.8 5.8 5.8 5.8 4.8 7.7

I(bn; bn−1) 2.6 2.1 1.6 1.4 1.2 1.0 3.4

I(bn; bn−2) 1.7 1.3 0.9 0.8 0.7 0.6 2.8

I(bn; bn−3) 1.2 0.9 0.7 0.6 0.5 0.4 2.1

I(bn; bn−4) 0.9 0.7 0.5 0.4 0.3 0.3 1.8

I(bn; bn−5) 0.7 0.5 0.3 0.3 0.2 0.2 1.4

3.4. Frame reconstruction

The reconstruction of xn reduces to finding the proper parame-
ters µxn|ζ and σ2

xn|ζ of a Gaussian density that approximates the
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discrete distribution p(x
(i)
n |ζ), i = 1 . . . 2M , where x

(i)
n = c(i)

is the i-th codebook centroid coresponding to the bit pattern b
(i)
n .

We experimentally observed that in the first half of the burst, i.e.

n = 1, . . . , N

2
, the maximum of p(x

(i)
n |ζ) is in the most cases at

i = s which means that the most probable value of xn given ζ is the

last correctly received before the burst. Similarly, x
(e)
n = c(e) is the

most probable value in the second half of the burst. This observa-

tion indicates that nearest frame repetition (NFR) is in fact a MAP
estimation strategy. Therefore an option for estimating xn is NFR.

Another option we tried was the MMSE estimate:

µxn|ζ =
2MX
i=1

c
(i) · p(x(i)

n |ζ). (17)

The variance of the distribution is obtained by:

σ
2
xn|ζ =

2MX
i=1

(c(i) − µxn|ζ)2 · p(x(i)
n |ζ). (18)

As an approximation, the MAP estimate can be used in (18) in place

of µxn|ζ .

4. FAST TABLE LOOKUP IMPLEMENTATION

The drawback of the computationally efficient algorithm presented

in Section 3 is that the matrices A
n, n = 1, . . . , L have to be stored.

For the quantization scheme used in ETSI Front-end for DSR [10]

this amounts to L× (5 ·22·6 +22·5 +22·8) = L×87040 values. We
used L = 6 in our experiments. In this section we propose a sim-

plification which results in significant memory and computational

savings without loss of performance. Let

c = [c(1)
, c

(2)
, . . . , c

(2M )] (19)

be the vector of codebook centroids and

c
2 = [(c(1))2, (c(2))2, . . . , (c(2M ))2] (20)

the vector of their squared values. Ignoring the contribution of the

backward recursion, we use the NFR estimate x
(s)
n , n = 1, . . . , N

2
in the first half of the burst and compute the variance of the posterior
probability by:

σ
2
n =

2MX
i=1

(c(i) − x
(s)
n )2 · α(i)

n (21)

= c
2 · (An)T · αT

0 − 2x
(s)
n c · (An)T · αT

0 + (x(s)
n )2

For the second half of the burst we use x
(e)
n as estimate for the

mean and simply use the variance computed on the first half. The

advantage is that the expressions c · (An) and c
2 · (An) are vectors

of length 2M , which need considerably less storage than A
n and

which can be computed prior to recognition. Moreover, because α0

is a vector of zeros except of a one at position s, the multiplication of

a vector with αT
0 results in simply selecting the s-th element of that

vector. For the ETSI quantization scheme the memory requirement
is reduced from L × 87040 to L × 1216.

reliable reconstructed reliable

received receivedlost

reconstructed

0 1 . . .. . .. . . B
2

N −

B
2

N N + 1

Fig. 1. Schematic drawing of the burst of lost packets.

5. EXPERIMENTAL RESULTS

This section presents the results of the test we performed in order to

evaluate the effectiveness of the approach and to see the influence

of the approximations we have made on the recognition word error

rate. We have simulated a packet oriented transmission for various
network conditions. Each packet consisted of two feature vectors.

The losses have been induced by using a 2-states Markov chain [11],

characterized by the conditional loss probability clp and mean loss

probability mlp.

Table 2. The conditional loss probability and mean loss probability
of the four simulated network conditions.

Condition C1 C2 C3 C4

clp 0.147 0.33 0.5 0.6

mlp 0.006 0.09 0.286 0.385

The recognition task was the clean set of AURORA 2 database

consisting of 4004 utterances distributed over 4 subsets and the

acoustic models were those described in [12].

The ETSI advanced front-end for DSR [10] was employed for

feature extraction and quantization. The word error rate in the error

free scenario was 0.86% for this setup.

5.1. Reconstruction without uncertainty decoding

We evaluate first the so called ”plug-in” methods, where the lost

value is replaced by a point estimate which is fed into the unmod-

ified speech recognizer as if it were the true sent value. The left
side of Table 3 shows the word error rates (WER) when using NFR

for reconstruction. This, according to the notations of 3.1, means

repetition of b̂0 in the first half of the burst and b̂N+1 in the sec-

ond. The right side of the table shows the WER achieved by MMSE
reconstruction.

The value B in the Tables 3 and 4 denotes the maximal num-

ber of frames in a burst for which the reconstruction is carried out.

That means, for bursts longer than B only the first and last B

2
frames

are reconstructed (see Figure 1). The reason to do so is showing

that MMSE reconstruction can do better that NFR for short bursts.

Looking only at the last line (B = 48) of the table, we would con-

clude that NFR outperforms MMSE. However, the frames close to
one end of the burst are much better reconstructed by MMSE, as the

line B = 6 shows. These results support what we also noted in

Section 3.3: the farther the reconstructed frame is from one end of

the burst, the smaller the mutual information becomes, making the
correct reconstruction more difficult.

5.2. Uncertainty decoding

In the second set of experiments we utilized a modified speech de-
coder taking into account the unreliability of a feature as presented
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Table 3. Word error rates [%] for NFR and MMSE reconstruction
as a function of maximal number of reconstructed frames B for dif-
ferent channel conditions

NFR MMSE

B C1 C2 C3 C4 C1 C2 C3 C4

6 0.86 1.12 2.75 6.45 0.86 1.11 2.35 5.33

12 0.86 1.06 2.33 5.02 0.86 1.08 2.26 4.79

24 0.86 1.06 2.30 5.01 0.86 1.08 2.32 5.44

48 0.86 1.06 2.31 5.02 0.86 1.08 2.32 5.47

in Section 2. The same reconstruction methods NFR and MMSE

have been evaluated again. The WERs are tabulated in Table 4.

Table 4. Word error rates [%] for NFR and MMSE reconstruction
with uncertainty decoding as a function of maximal number of re-
constructed frames B for different channel conditions

NFR MMSE

B C1 C2 C3 C4 C1 C2 C3 C4

6 0.86 1.03 2.13 5.01 0.86 1.03 2.14 4.74

12 0.86 1.01 1.82 3.78 0.86 1.01 2.04 4.45

24 0.86 1.01 1.80 3.72 0.86 1.01 2.07 4.66

48 0.86 1.01 1.80 3.72 0.86 1.01 2.08 4.66

Overall, uncertainty decoding is superior to the plug-in methods.
However, the same trend is observed: when used with MMSE, it is

effective only for the reconstruction of the frames close to one end

of the burst while the far-away frames are reconstructed poorly.

While the results presented sofar had been obtained by the exact
forward-backward algorithm, Table 5 gives the results using the fast

table lookup method of Section 4. Surprisingly, no performance loss

occurred compared to the corresponding results in Table 4, on the

contrary it seems to offer a slight improvement. However, we cannot
explain this behavior at this time.

Table 5. Word error rates [%] for NFR reconstruction and uncer-
tainty decoding with reliability computed by table lookup.

B C1 C2 C3 C4

6 0.86 1.06 2.16 5.10

12 0.86 1.03 1.80 3.72

24 0.86 1.03 1.82 3.59

48 0.86 1.03 1.82 3.60

6. CONCLUSIONS

In this work we developed and tested a soft-feature concept for dis-

tributed speech recognition over loosy packet channels. It is ob-

served that the MMSE estimate of the lost frame works best for

short error bursts while nearest frame repetition, which is shown to
be closely related to the MAP estimate, is superior for longer bursts.

In both cases the soft information which is utilized in uncertainty

decoding, gives significant performance improvement, e.g. a 30%

reduction of WER on a channel with 40% packet loss ratio (con-
dition C4). Using constraints which are specific to a packet loss

scenario, we demonstrated how the soft features can be easily ob-

tained using a moderately sized lookup table and involving virtually

no computational effort.
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