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ABSTRACT

This work proposes a noise reduction system for use in high noise
environments such as motor racing. First, an analysis of the audio
data received from the driver reveals that the main noise sources
are from the engine, airflow and tyres. These are found to relate
to engine speed, road speed and throttle position information that is
received in a data stream from the car’s on-board computer. A two-
stage noise compensation strategy is proposed which first suppresses
engine harmonics using adaptive filtering with engine speed refer-
ence information taken from the data stream. Second, a maximum
a posteriori (MAP) prediction of the tyre and airflow noise is made
from data stream values and this is combined with spectral subtrac-
tion for noise suppression. Human listening tests reveal that both
noise reduction stages lead to good improvements in the intelligibil-
ity of the speech with a comparative mean opinion score (CMOS) of
+1.57 being obtained.

1. INTRODUCTION

The aim of this work is to reduce the amount of noise present on
speech that exists during radio driver-to-pit-crew communications
in motor racing applications. Many of the noise sources encoun-
tered in motor racing are similar to those found in conventional road
cars but the higher speeds and more powerful engines cause the re-
sulting signal-to-noise ratios (SNRs) to be as low as -20dB in some
instances. This is considerably lower than that found in road cars
where SNRs may be down to -5dB. Work has been reported on
speech enhancement in car environments, where techniques using
spectral subtraction or Wiener filtering have been successful [6, 3,
5, 2, 1]. Typical noises encountered are from sources such as the
engine, tyres, airflow, radio, air-ducts and indicators. These noise
compensation methods typically make estimates of the contaminat-
ing noise during non-speech periods and then use the estimates to
suppress the noise.

In motor racing applications fewer noise sources are present but
those that do exist tend to be powerful. The three dominant noise
sources in motor racing environments come from the engine, tyres
and air flowing past the car. However, in motor racing, detailed infor-
mation is available from the car’s on-board computer which provides
a data stream that gives information on road speed, engine speed and
throttle position. This paper demonstrates this information is related
to the primary contaminating noises and shows how this explicit in-
formation can be used to aid noise reduction. An analysis is made in
section 2 of this paper into the contaminating noises and how they
relate to the data stream information for the purpose of noise mod-
elling.

This leads to a two-stage noise reduction strategy. The first stage
aims to remove engine noise using adaptive filtering and is discussed
in section 3. The second stage removes tyre and airflow noise and is

discussed in section 4. Experimental results are presented in section
5 which demonstrates the effectiveness of noise reduction through a
series of human listening tests.

2. ANALYSIS OF NOISE SOURCES

In addition to the driver’s speech, the car generates a data stream
which comprises road speed (measured in kmh−1), ri, engine speed
(measured in rpm), ei, and throttle position (measured as a percent-
age of full throttle), ti. These values are updated every 10ms and
can be considered as a sequence of vectors, di = [ri, ei, ti]. To il-
lustrate the relationship between the received audio signal and data
stream parameters, Fig 1(a) shows the spectrogram of a 10s frame of
audio while the car accelerates from 100 kmh−1 to 300 kmh−1. Ac-
companying this, Figs 1(b) to 1(d) show the corresponding engine
speed, throttle position and road speed. Two dominant noises can
be observed in the spectrogram – the narrow bands of high energy
corresponding to the engine harmonics and the low frequency en-
ergy which comes from the tyres and airflow. The graphs of engine
harmonics and the engine speed data parameter have similar shape.
Most noticeable in Figs 1(a) and 1(b) are the sudden drops in fre-
quency of the engine harmonics when a gear change occurs. Also
noticeable is the increase in energy of these harmonics as throttle is
increased. The low frequency tyre and airflow noise shows relation
with the road speed. For example an increase in low frequency en-
ergy can be observed from 1.2s onwards in Fig 1(a) which relates to
the increase in road speed in Fig 1(d), also reported in [7].

A simple model of the received noisy speech can therefore be
made as:

x(n) = s(n) + dE(n) + dTA(n) (1)

where x(n) is the received noisy speech signal at sample n, s(n)
is the original clean speech and dE(n) and dTA(n) are the noise
components from the engine, tyres and airflow.

Engine noise can be modelled as a function, gE , of engine speed
and throttle position:

dE(n) ≈ gE(ei, ti) (2)

It is more appropriate to consider this function in the magnitude
spectral domain, |DE(f)|, where engine noise can be modelled as a
series of impulses:

|DE(f)| ≈
2M−1�
m=1

hmδ

�
f − mf0

2

�
(3)

where hm is the amplitude of the mth engine sub-harmonic, M is
the number of harmonics in the spectrum and f0 is the fundamental
frequency of engine rotation.
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(b) Engine Speed
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(c) Throttle opening
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Fig. 1. a) Spectogram of 10 seconds of audio recorded under ac-
celeration, b), c) and d) are the corresponding engine speed, throttle
position and road speed parameters.

The tyre and airflow noise can similarly be modelled by the fol-
lowing function, gTA of the road speed,

dTA(n) ≈ gTA(ri) (4)

Based on this breakdown of the contaminating noise into a harmon-
ically structured engine component and a wideband tyre and airflow
noise component, noise reduction is implemented as a two-stage
process.

3. ENGINE NOISE REDUCTION

The first stage of noise reduction is the cancellation of the rapidly
time-varying engine harmonics. This is achieved through the use of
a multiple adaptive notch filter using the LMS algorithm [4]. The
restored speech signal at the output of this first stage of noise reduc-
tion, ŝ1(n), is given as,

ŝ1(n) = x(n)−
M�

m=1

w(n)m,1 cos(φm(n))+w(n)m,2 sin(φm(n))

(5)
Since the noise ensemble is known, the filter can be configured in a
spatial configuration as discussed in [10] and illustrated in Fig 2. The
reference signal to the adaptive filter comprises a series of cosine
and sine inputs, cos(φm(n)) and sin(φm(n)), where m indicates
the harmonic number. The phase φm(n) is derived from the nor-
malised angular engine speed Ω(n) and is computed as φm(n+1) =
φm(n)+mΩ(n+1). The normalised angular engine speed, Ω(n), is
computed from the engine speed data parameter, ei. First the engine
speed parameter is up-sampled to the sampling rate of the audio, fs,
to give eup(n), and the normalised angular engine speed is computed
as, Ω(n) =

2πeup(n)

60fs
The filter coefficients, wm,k(n), are updated

using the LMS algorithm which is described as

w(n + 1)m,k = w(n)m,k + αŝ1(n)x(n) (6)

Where α is the convergence factor. For a filter with a fixed number of
notches, the number of engine harmonics that can be filtered depends
on the maximum possible engine speed, emax, and the sampling
frequency, fs and given as number of notches = 2 fs

emax/60
− 1.

Doubling the number of integer engine harmonics gives the number
of half harmonics including the sub-harmonic at half the frequency
of the fundamental. Since a notch is not required at f0

2
the total

number of notches is reduced by 1. Good results were obtained when
fs = 8 kHz with 52 notches.

4. TYRE AND AIRFLOW NOISE REDUCTION

Tyre and airflow noise reduction is implemented by first making an
estimate of the magnitude spectrum of the noise and then applying
spectral subtraction to suppress the noise. In most spectral subtrac-
tion implementations a voice activity detector (VAD) is employed to
identify non-speech periods from which to estimate the noise. How-
ever the high level of noise power encountered makes the use of a
VAD unrealistic. Instead, the relation observed between road speed

Fig. 2. Configuration of LMS adaptive notch filter applied to engine
noise cancellation
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and the tyre and airflow noise is exploited to enable a maximum a
posteriori (MAP) prediction of the noise spectrum to be made from
a road speed measurement.

4.1. Noise prediction

Prediction of the tyre and airflow noise is achieved using a Gaussian
mixture model (GMM) which models the joint density of the tyre
and airflow noise magnitude spectrum and the road speed. The GMM
is trained using a set of augmented feature vectors, zi, defined as,

zi = [DTAi , ri] (7)

Vector DTAi represents the magnitude spectrum of the ith frame
of audio and comprises a set of N = 128 magnitude spectral bins,
given as DTA = [|DTAi(1)|, ..., |DTAi(f)|, ..., |DTAi(N)|] and
ri is the corresponding road speed measurement taken from the data
stream.

From a set of training data vectors that have passed through the
engine noise removal stage, unsupervised clustering is implemented
using the expectation-maximisation (EM) algorithm to produce a
GMM comprising a set of K clusters,

p(z) =

K�

k=1

βkf(z, µz
k,Σz

k) (8)

Associated with each cluster is a prior probability βk which reflects

the proportion of training data vectors allocated to the kth cluster.
Within the GMM, each of the K clusters is represented by a proba-
bility density function (PDF), with mean vector and covariance ma-
trix given as:

µz
k =

�
µDT A

k

µr
k

�
Σz

k =

�
ΣDT A,DT A

k ΣDT A,r
k

Σr,DT A
k Σr,r

k

�
(9)

Prediction of the noise magnitude spectrum, D̂TA, given the input
road speed, ri, is made from the closest cluster, k∗, to the input road
speed, ri, given as:

k∗ = argmax
k

{p(ri|Ψr
k)βk} (10)

where p(ri|Ψr
k) is the marginal distribution of road speed for the kth

cluster, Ψk, in the GMM.
Using the joint density of road speed and noise magnitude spec-

trum from the cluster k∗, together with the current road speed, ri,
a maximum a posteriori (MAP) prediction of the noise magnitude
spectrum, D̂TAi , can be made,

DTAi = argmax
DT A

{p(DTA|ri, Ψk∗)} (11)

This leads to the prediction of the noise magnitude spectrum from
cluster k∗ as,

D̂TAi = µDT A
k∗ + ΣDT A,r

k∗ (Σr,r
k∗ )−1 (ri − µr

k∗) (12)

4.2. Spectral subtraction

Using the predicted tyre and airflow noise magnitude spectrum, spec-
tral subtraction is applied to produce a clean magnitude spectral es-
timate of the speech, |Ŝ2(f)|, from the magnitude spectral output of
the engine noise removal stage, |Ŝ1(f)|,

|Ŝ2(f)| = |Ŝ1(f)| − γ|D̂TA(f)| (13)
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(b) After Noise Reduction
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Fig. 3. a) Spectogram of 4 seconds of audio before processing, (b)
Spectogram of the audio after noise reduction.

where γ is the over-subtraction factor. Post-processing is then ap-
plied to reduce musical noise distortions by placing constraints on
the minimum permissible duration of isolated tones in the output
signal [9]. The clean speech magnitude estimate, |Ŝ2(f)|, is then
combined with the original noisy phase, � X(f), to give the com-
plex frequency-domain estimate of the clean speech, Ŝ2(f). This is
converted back into a time-domain frame of speech using an inverse
Fourier transform. Overlap-and-add is then applied to successive
frames of speech to produce the restored speech signal, ŝ2(n).

5. RESULTS

This section analyses the effectiveness of the two noise reduction
stages in improving the intelligibility of the speech. First, spectro-
gram analysis is made which compares the audio signal before and
after processing. Secondly, the results of a series of human listening
tests are presented.

5.1. Spectogram analysis

Figure 3(a) shows a 4s duration spectrogram of noisy audio taken
while the car is accelerating. Figure 3(b) shows a spectrogram of
the same audio signal but after the application of the 2-stage noise
reduction system. Labels are shown on both spectrograms to in-
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dicate where speech events occur in the audio. Figure 3(b) shows
clearly that most of the engine harmonics have been removed by
the adaptive filtering although some residual engine harmonic noise
is present at low frequencies. Figure 3(b) also shows that spectral
subtraction has removed most of the low frequency tyre and airflow
noise. However as a consequence of spectral subtraction, a number
of short duration tones have been introduced into the audio. Their
occurrence is governed by the amount of over-subtraction and ap-
plication of post-processing. Experimentation has determined that
a trade-off exists between the amount of noise surpression possible
against the amount of musical noise introduced. In practice it is
simple for a listener to adjust the musical noise for maximum intel-
ligibility.

5.2. Human listening tests

Many studies into speech enhancement measure their success on
SNR comparisons before and after noise reduction. In this work it
was found that the very low SNRs encountered made such analysis
less conclusive. Instead the success of the noise compensation meth-
ods used in this work have been evaluated using a series of human
listening tests. These subjective listening tests were conducted in ac-
cordance to ITU guidelines [8], using a Comparative Mean Opinion
Score (CMOS). The CMOS scale is used to compare speech quality
before and after noise reduction. Ratings are made on a scale of -3 to
+3, where -3 indicates that the quality of the second sample played
is much worse than the first, +3 indicates quality of the second sam-
ple is much improved and 0 indicates no discernible difference. A
total of 30 listeners were employed in the tests and subjects were
instructed to rate the samples according to speech intelligibility. In
each test, the listener was played 20 pairs of audio files and was
asked to rate the second audio sample in relation to the first sample
heard. The pairs of audio files arranged so that comparisons could
be made between

• Unfiltered vs. engine noise removal

• Unfiltered vs. engine noise removal and airflow/tyre noise
removal

In each listening test, two different sets of these conditions were
played to the listener, with pairs selected at different SNRs. The
pairs of audio files were also arranged so that the unfiltered audio
occurred first in half of the pairs and second in the remaining pairs.
Table 1 shows the CMOS obtained from the 30 listeners when com-
paring the original audio with that after engine noise removal and
also when comparing the original audio with that after both engine
noise and tyre and airflow noise removal. The results show that a sig-
nificant improvement in the audio was obtained after the application
of adaptive filtering to remove the engine noise. A further increase
in audio quality was then heard when applying spectral subtraction
to remove tyre and airflow noise 1.

Filtering CMOS score
Unfiltered vs. Adaptive filtering 1.32
Unfiltered vs. Adaptive filtering and spectral
subtraction

1.57

Table 1. Results of the listening tests using the Comparative Mean
Opinion Score(CMOS)

1Note: audio samples of the results discussed here are available from
http://www.cmp.uea.ac.uk/∼bpm/ICASSP2006/motorracing/motorracing.htm

6. CONCLUSION

This work has examined the characteristics of noise present in the
very high noise environment of motor racing and established that re-
lation exists between the various noise sources and data stream para-
meters measured by the car’s on-board computer. A two-stage noise
reduction system has been developed which first removes engine har-
monics using adaptive filtering by forming a reference signal directly
from the engine speed data parameter. Secondly, a GMM has been
employed to model the joint density of tyre and airflow noise and
road speed, which enables a MAP prediction of noise to be made
from road speed measurements. A series of human listening tests
then confirms the success of both stages of noise reduction, giving
an overall CMOS of +1.57 in comparison to the unfiltered audio.
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