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ABSTRACT

Hamonicity and continuity are two important perceptual cues for
separating mixed speech sources. This paper focuses on the
separation of two speech sources with a single-microphone input.
An iterative, least-squares (LS) based trajectory regeneration
algorithm is proposed to estimate the magnitude spectrum of each
source. Time-derivatives of the spectrum, or the dynamic spectral
information, is used as a constraint in solving the resultant
weighted normal equations. Each estimated spectral trajectory, as
a result, exhibits similar temporal variations as the original source.
Asymptotically, we also prove that the regenerated trajectory yields
the same time variations as the given dynamic information. When
cascaded with our previously proposed harmonic filtering
algorithm to separate mixed voiced signals, the new trajectory
regeneration is shown to be very effective to reduce mean squared
errors by 82.2% and 69.5%, relatively, with ideal and
approximated dynamic information, respectively.'

1. INTRODUCTION

In real-life situations, sound signals often reach our ears as a

mixture of target signal and background noise or competing speech.

While human attends each individual component sounds quite
easily even with only one ear [1, 2], the performance of most
speech processing systems are easily degraded in this adverse
condition. It is critical to extract individual sound sources from the
input mixture prior to any further processes. This is referred as the
source separation problem. This paper focuses on the single-
microphone speech source separation. Source separation has been
one of the popular research topics [2 - 5]. Two major approaches,
independent component analysis (ICA) and computational auditory
scene analysis (CASA), have received lots of attention. ICA
utilizes the statistical properties between sources and the
availability of several different input mixtures; while CASA
studies the perceptual organization and mimics how human
listeners segregate concurrent sounds. Hence, CASA is always
possible to have the number of microphones less than the number
of source signals.
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In human perception, the input mixture is going through an
auditory scene analysis (ASA) [2], which separates individual
sound sources by looking at the regularity found in the input
mixture. Sound components, which are likely to come from the
same origin, are grouped together as one single source. There are
four major regularities used, namely harmonicity, continuity,
coherent changes taken in sound components and common onset
and offset. For voiced speech, components having identical
fundamental frequency (FO) are regularly spaced in frequency
domain. This is the harmonicity regularity. Continuity refers to
the phenomenon that a single sound changes its properties
smoothly and slowly. Furthermore, abruptly changed sounds tend
to perceptually exhibit closure, provided the properties before and
after the discontinuity are matched. Coherent changes describe the
finding that components from a specified source vary in amplitude
and frequency in a coherent manner. As it is unlikely that distinct
sources start and end at the same time, the auditory system tends to
group components having identical onset and offset time together.
It is believed that the auditory system not only uses acoustical
information, but also high-level knowledge for actual sound
segregation. The high-level knowledge includes feedback from
recognition and predictions from what will be expected to hear [6].

A speech segregation system for mixtures with two sources has
been previously proposed, which exploits the harmonic structure in
voiced speech [7]. It is a recursive algorithm that finds an optimal
pitch prediction error filter given either the input mixture or any
periodic signal. At the first iteration, one of the FOs of two voiced
sources is estimated (denotes it as FO') and by filtering the input
mixture, the energy at corresponding harmonic frequencies is
significantly suppressed. The output residual becomes the estimate
source associated with FO?. At the second iteration, this residual,
which roughly contains one periodic signal (of F0?) only, is then
used to derive a pitch prediction error filter again and the output
residual will be the other source associated with FO'. The process
iterates until estimates converge. From the experimental results,
this harmonicity segregation system works well for synthetic
speech; for real speech, the performance is not satisfactory that the
output estimate still contains some residual from the interfering
source. This may due to the properties below: (1) real speech is
neither ideally periodic nor driven by impulse train and the way
that energy concentrated in harmonic structure is wider like a
kernel, rather than an impulse in synthetic speech; and (2) energy
is not exactly located at multiples of FO, especially in high
frequency region.

In this paper, an iterative trajectory recovery algorithm is
proposed by using both continuity and expectation from dynamic
information. The spectral trajectory represents the continuity
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examined and the dynamic information applied is the delta
coefficient calculated on the log spectral magnitude. After passing
through the harmonic filtering in [7], the spectral trajectories of
output estimate will then be recovered by following the expected
delta shape in an appropriate manner. The proposed regeneration
algorithm is supported by both mathematical proof and
experimental results. In particular, the performance with imperfect
delta coefficient (using piecewise-constant approximation or three-
level quantization) is also studied and most of the residual of
interfering speech is removed by inspecting the mean-square-error
(MSE) in estimation.

2. TRAJECTORY REGENERATION

Dynamic spectral information, namely the velocity and
acceleration features, has been used successfully for automatic
speech or speaker recognition [8, 9]. The dynamic spectral
information is obtained over a time window by linear regression
[10]. As a result, the dynamic information of a clean source signal
should be relatively continuous and smoothly varying. Giving this
dynamic information, the spectral movement and the
corresponding direction are known. This represents the expected
spectral trajectory. In the following, the detailed descriptions of
the proposed trajectory regeneration algorithm using dynamic
information will be given.

2.1. Formulation

The input mixture signal x(n) is related to the source signals x,;(n)
and x,(n) as

x(n) = x(n) +x,(n) M
Let x;'(n) and x,'(n) denote the two intermediate estimated source
signals given at the output of the harmonic filtering system. Fig. 1
illustrates the block-diagram of the overall separation system,
where x,"'(n) and x,''(n) are the resultant estimates.

The trajectory regeneration process is carried in the log
magnitude spectral domain. Same procedure is applied to both
x;'(m) and x,'(n). Let x;'(n) be one of the intermediate estimate
(ie[l, 2]). xi/(m) is first windowed into frames and their
corresponding short-time complex spectra X;'(k, n) at frequency bin
k and frame »n are computed. The magnitude is further converted to,

Y — '
yie ()= 10log( X, (k.m)]) @)
dynamic information
of x,(n)
r-——-—-~""""™"/"~—"~"""™"™""17"""""3
: , trajectory regeneration [
| X, (m)| (refines the transitional shapes for | 1%, (1)
| | harmonic filtering all frequencies and preserves the
X(n) — x,(n) + x,m)\ | (removes energy of output energy as the input) |
! e interfering :
| | source at harmonic |
] frequencies) %M same trajectory 152 ()
: block as above ]
|
! I

dynamic information
of x,(n)
Fig. 1. Block-diagram of the overall separation system. x,’(n) and
X,'(n) enter two identical trajectory regeneration blocks apart.

For each frequency bin, perform the following. Let yy = [vu(1),
Vie(2), ... vu(NJ]" be the observed magnitude trajectory at
frequency bin &, for k=1, 2, ..., K, where K and N represent the

numbers of bins and frames respectively. 7" denotes the transpose
operation. It is assumed that the ideal delta coefficient Ay;, (Ayy =
[Avill), Aviu(2). ..., Av(N)]") is given, but not derived by yy. In
practice, this assumption should be relaxed and the performance
with imperfect Ay, will be reported in later section. As the delta
coefficient is associated to the static counterpart by linear
regression [10], we have
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where y;'(n), 1 and W represent the unknown static trajectory
components to be found, the identity matrix and the linear
regression coefficient matrix respectively. In a matrix form,

I | Yik
|:W:|Yik = [A}’ik] 4)

The least squares solution is,

el e n]
~+wrw)'h WT][ .. ]

Ayix

Both static and dynamic trajectories impose constraints in the
estimation of y;'. Referring to Equation (4), yy' has to be
unchanged as the observed yj,, but attains the transitional shape as
Ay simultaneously. It is believed that the coarse power levels of
individual sources have been appropriately adjusted by the
preceding harmonic filtering, as energy of interfering source at
harmonic frequencies is greatly reduced. This is maintained by the
constraint from yy. Nevertheless, the separation process in
harmonic filtering is done in a frame basis. Adjacent frames are
estimated alone and hence, for continuity, the spectral trajectory
needs to be refined with the given Ayj.

The above recovery scheme is iterated by substituting y;," back
in Equation (5) as yj, to obtain a new estimate, until y;,." converges
or a certain number of iterations. By converting yj. ' to linear scale
and combining with phase in X;'(k, n), the output speech is finally
reconstructed by the overlap-add method.

2.2. Proof

The above iterative trajectory regeneration process is investigated
to find: as the iteration proceeds, if the proposed method leads to
identical trajectory as the given Ayj, or not. Equation (5) shows
the estimated yj,' at the first iteration. At the second iteration,

wefbw Ly T

v ®)
[ ww) WT][A“Y;:‘k] [ WTW) WAy,
At the third iteration,
vac= = ww) fr we ][Ayy“k]+ [+ Wi W) WAy, e

1
+ (l + WTWT WAy
Hence, the proposition below is proposed for the m™ iteration,
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In the following, this proposition is proved by using

mathematical induction. The case for m = 1 is identical to
Equation (5). Assume that when m = p,
yik'=(l+WTW)p[l WT][ Yik :|+(1+WTW)(P*1)WTAyik ©)
Ayik
. (1 + WTWTZWTAyik + (1 + WTWTIWTAyik
At the (p + 1)™ iteration,
-1
o1 + ]| ik '(in equation (9))
Yik'= {[[ w! ]|:W:|} ﬁ w! ][yk ¢ Aqu. l ]
Yik (10)
S L A
Yik
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The proposition in Equation (8) is proved. With this general
expression, the following examine how y;,' behaves if m — eo.
vi'= [0+ WIW” v+ [+ W W) W Ay
W W WAyt an
+ (1+ WTW)ZWTAyik + (1+ WTWTIWTAyik
Using sum of geometric progression, Equation (11) becomes:
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When m — oo,
vid=E W W EIW Ay = -FWOW] WAy a13)

We assume the linear regression coefficient matrix W is symmetric,
which is approximately true except for a few boundary frames,

-2 -1
Vik'=—[-W 7 [WAyj =W Ayy (14)
Wyik'=Ayik (15)
As the condition number of W is usually very large, W' cannot
be accurately found. As a result, as shown in Equation (15), when
iteration goes to infinity, the estimated yj;' from the proposed

algorithm generates a spectral trajectory which has its spectral
dynamic information the same as Ayj.

3. EXPERIMENTAL RESULTS AND DISCUSSIONS

content: /a://i://u://e//23:/ (in international
phonetic alphabet)
average power: 45 dB

sampling frequency: 8§ kHz

x(n)

content: We were away a year ago.
average power: 45 dB
Sampling frequency: 8 kHz

Xs(n)

Table 1. Details of the speech samples.

The proposed trajectory regeneration algorithm is first verified
with the ideal dynamic information in Section 3.1. In Section 3.2,
imperfect dynamic information is used to check the regeneration
performance under practical situations. Real speech samples are
recorded for the experiments and their details are listed in Table 1.

3.1. Trajectory regeneration with ideal dynamic information

By using the source signal x;(n), the ideal Ay;, is found. Fig. 2
shows an example of the recovered magnitude trajectories for x,(n).
This trajectory is taken from frequency around 1560 Hz (bin 50 out
0f 256 bins in total). The number of iteration is 50.

estimated magnitude trajectory

10logfmagnitude)

ideal,{r)
—=- xy'(n) (efare recovery)

%) (after recavery)

o 02 04 08 08 1 12 14 16 18 2
time/ s

Fig. 2. Magnitude Trajectories of ideal x,(m), x,'(n) (before
recovery) and x,''(n) (after recovery).

The MSE in log magnitude at various stages of the proposed
separation process are measured and listed in Table 2.

stage of separation process MSE (dB?)
input stage (before any separation process) 39.30
after harmonic filtering 28.28
after trajectory m=1 25.77
regeneration m=> 15.59
m=50 6.99

Table 2. MSE before and after a given number of trajectory
regeneration iterations (with ideal dynamic information).

Adjusting the spectral transition according to the ideal delta
coefficients, the MSE is reduced by 34.4% from 39.3 dB* to 28.28
dB? and 25.77 dB? after harmonic filtering and the first iteration
respectively and further attained to 82.2% (6.99 dB?) after 50
iterations.  The result obtained just after harmonic filtering
represents the expected performance from the system in [7] for this
real speech sample. Referring to Fig. 2, the shape of the estimated
trajectory is highly similar to the ideal trajectory. This shows the
proposed regeneration algorithm helps to generate output speech
varies in a manner similar to what pure source signals behave and
with good continuity. Since y;," has to maintain the power before
and after regeneration alike and achieve an appropriate transitional
shape similar to Ayj; at the same time, it is certainly that even
trajectory has been properly steered, there are occasionally some
samples quite different from the ideal values (between 0.2 to 0.5 s).
This illustrates the intrinsic property of dynamic information that
only transitions are concerned, but not the actual magnitude levels.
Thus, it is necessary to have both the coarse estimation from
harmonic filtering and refinement from trajectory regeneration.
Concerning the output speech quality, it is highly natural and no
distinctive distortions can be heard.
regeneration with imperfect

3.2. Trajectory dynamic

information

Ideal dynamic information is not always available, especially in
adverse environments. Using imperfect delta coefficients can
illustrate how the proposed trajectory regeneration algorithm
performs under more practical situations. Two kinds of imperfect
dynamic information have been tried. The ideal Ayy, is
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approximated by either (1) a mean value of Ay; for each
segmented trajectory or (2) one of three quantization levels after
clustering. The details of the two approximations will be given
below.

Piecewise-constant approximation: The observed yj, is passed
through an auto-segmentation module and partitioned into a given
number of homogeneous segments. All the ideal delta coefficients
within a segment are replaced by the corresponding mean value.
The auto-segmentation module uses dynamic programming to
select the optimal partition, which generates the smallest distortion
resulted from replacing magnitude values with the associated
means. The distortion is defined as the Euclidean distance and the
number of frames within a segment must be larger than a minimum
segmental length. With the mean and variance statistics from the
segmentation result, maximum-likelihood estimation (MLE), so as
to make use of both the mean approximation and the variances of
different segments, is used to find out yy,".

Three-level quantization: ~ As both delta and acceleration
coefficient are the time difference of the trajectory samples, they
are zero-mean. In addition, the sign given in the dynamic value
plays an important role, as it controls whether the trajectory should
go up or down. Hence, the ideal Ay, is clustered into three groups
by k-means clustering and each ideal Ayy, value is then quantized
to one of the three centroids. Finally, the magnitude trajectory is
estimated by Equation (5) with these quantized Ayj.

stage of separation process MSE (dB?)
input stage (before any separation process) 39.30
after harmonic filtering 28.28
. m=1 23.18
& m=50 17.19

Table 3. MSE before and after a given number of trajectory
regeneration iterations (after piecewise-constant approximation).

stage of separation process MSE (dB?)
input stage (before any separation process) 39.30
after harmonic filtering 28.28
after trajectory m=1 26.07
regeneration m=> 20.67
m =350 11.99

Table 4. MSE before and after a given number of trajectory
regeneration iterations (after three-level quantization).

Table 3 and 4 show the MSE in log magnitude of the two
approximations. Comparing the results in Table 2 and 3, the
iteration process in MLE with piecewise-constant approximation
saturates soon and only 56.3% of the total MSE is eliminated after
50 iterations. It is found that, however, the MSE obtained after the
first iteration is the lowest. This demonstrates the superiority of
MLE over the standard least-square solution when yj; or delta
coefficients have different reliabilities. More weights (small
variances) are put on those reliable data. Besides, the performance
of the auto-segmentation module is critical that the segmentation
boundaries are highly sensitive to the total number of segments and
the minimum segmental length. In order to have accurate estimate
of variances, each segments cannot be too short.

Regarding the estimation after three-level quantization, the
MSE in log magnitude is satisfactory that it is reduced to 11.99
dB? (69.5%) finally. Comparing with Table 2, the MSE values are
slightly higher, but the transitional direction preserved after

quantization is shown to be an effective cue for trajectory recovery.
Comparing the results in Table 3 and 4, the three-level
quantization is much better than the piecewise-constant
approximation and a lower MSE can be achieved, if more
iterations are allowed. The output speech from piecewise-constant
approximation contains some distortion, while there is hardly any
distortion perceived in the output speech from the former approach.
Furthermore, no parameters are involved in three-level
quantization.

4. CONCLUSIONS

A trajectory regeneration algorithm for separating mixed speech
sources in one single microphone is proposed. The complete
system includes: harmonic filtering and trajectory regeneration.
Trajectory regeneration refines the spectral power obtained in
harmonic filtering. The dynamic spectral information is used as a
constraint in regenerating a continuous spectral trajectory
iteratively. The dynamic information represents the expected
spectral changes along time and this can be one of the feedback
information from speech recognition. The iterative regeneration
process is proved to converge asymptotically to a trajectory which
has the same dynamic information. Experimental results also show
that significant amount of interfering energy is removed, even with
imperfect dynamic information.
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