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ABSTRACT
We report on the development of a noisy speech corpus suit-

able for evaluation of speech enhancement algorithms. This

corpus is used for the subjective evaluation of 13 speech en-

hancement methods encompassing four classes of algorithms:

spectral subtractive, subspace, statistical-model based and Wi-

ener algorithms. The subjective evaluation was performed by

Dynastat, Inc. using the ITU-T P.835 methodology designed

to evaluate the speech quality along three dimensions: sig-

nal distortion, noise distortion and overall quality. This paper

reports the results of the subjective tests.

1. INTRODUCTION

Over the past three decades, various speech enhancement al-

gorithms have been proposed to improve the performance of

modern communication devices in noisy environments. Yet,

it still remains unclear as to which speech enhancement algo-

rithm performs well in real-world listening situations where

the background noise level and characteristics are constantly

changing. Reliable and fair comparison between algorithms

has been elusive for several reasons, including lack of com-

mon speech database for evaluation of new algorithms, differ-

ences in the types of noise used and differences in the testing

methodology. Subjective evaluation of speech enhancement

algorithms is further complicated by the fact that the quality

of enhanced speech has both signal and noise distortion com-

ponents, and it is not clear as to whether listeners base their

quality judgments on the signal distortion, noise distortion or

both. Without having access to a common speech database, it

is nearly impossible for researchers to compare at very least

the objective performance of their algorithms with that of oth-

ers.

In this paper, we report on the development of a noisy

speech corpus (NOIZEUS) suitable for evaluation of speech

enhancement algorithms. This corpus is subsequently used in

a comprehensive subjective evaluation of 13 speech enhance-

ment algorithms encompassing four different classes of algo-

rithms: spectral subtractive, subspace, statistical-model based
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and Wiener algorithms. The enhanced speech files were sent

to Dynastat, Inc (Austin, TX) for subjective evaluation using

the recently standardized methodology for evaluating noise

suppression algorithms based on ITU-T P.835 [1].

2. NOIZEUS: A NOISY SPEECH CORPUS FOR
EVALUATION OF ENHANCEMENT ALGORITHMS

NOIZEUS1 is a noisy speech corpus recorded in our lab to fa-

cilitate comparison of speech enhancement algorithms among

research groups. The noisy database contains 30 IEEE sen-

tences [2] produced by three male and three female speak-

ers, and was corrupted by eight different real-world noises

at different SNRs. Thirty sentences from the IEEE sentence

database were recorded in a sound-proof booth using Tucker

Davis Technologies (TDT) recording equipment. The sen-

tences were produced by three male and three female speak-

ers (5 sentences/speaker). The IEEE database was used as it

contains phonetically-balanced sentences with relatively low

word-co-ntext predictability. The thirty sentences were se-

lected from the IEEE database so as to include all phonemes

in the American English language. The sentences were orig-

inally sampled at 25 kHz and downsampled to 8 kHz. To

simulate the receiving frequency characteristics of telephone

handsets, the speech and noise signals were filtered by the

modified Intermediate Reference System (IRS) filters used in

ITU-T P.862 for evaluation of the PESQ measure.

Noise was artificially added to the speech signal as fol-

lows. The IRS filter was independently applied to the clean

and noise signals. The active speech level of the filtered clean

speech signal was first determined using the method B of

ITU-T P.56. A noise segment of the same length as the speech

signal was randomly cut out of the noise recordings, appropri-

ately scaled to reach the desired SNR level and finally added

to the filtered clean speech signal. Noise signals were taken

from the AURORA database [3] and included the following

recordings from different places: babble (crowd of people),

car, exhibition hall, restaurant, street, airport, train station,

and train. The noise signals were added to the speech signals

1Available at: http://www.utdallas.edu/˜loizou/speech/noizeus/.
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Algorithm Equation/parameters Ref

KLT Eq. 14,48 [8]

pKLT Eq. 34, ν=0.08 [9]

MMSE-SPU Eq. 7,51, q=0.3 [10]

logMMSE Eq. 20 [11]

logMMSE-ne Eq. 20 [11]

logMMSE-SPU Eq. 2,8,10,16 [12]

pMMSE Eq. 12 [13]

RDC Eq. 6,7,10,14,15 [14]

RDC-ne Eq. 6,7,10,14,15 [14]

MB Eq. 4-7 [15]

WavThr Eq. 11,25 [16]

Wiener as Eq. 3-7 [4]

AudSup Eq. 26,38, νb(i)=1,2 iterations [17]

Table 1. List of 13 speech enhancement algorithms evaluated.

SPU=speech presence uncertainty, ne=noise estimation.

at SNRs of 0dB, 5dB, 10dB and 15dB.

3. ALGORITHMS EVALUATED

A total of 13 different speech enhancement methods were

evaluated based on our own implementation. Representative

algorithms from four different cla-sses of enhancement al-

gorithms were chosen: three spectral subtractive algorithms,

two subspace algorithms, three Wiener algorithms2 and five

statistical-model based algorithms. A subset of those algo-

rithms were evaluated with and without noise-estimation al-

gorithms. The parameters used in the implementation of these

algorithms were the same as those published unless stated

otherwise3. Table 1 shows the list of algorithms evaluated

with the associated parameters and Equations given in the

references. The decision-directed approach was used for es-

timating the a priori SNR in the statistical methods and the

Wiener as method [4] with a=0.98.

The majority of the algorithms utilized a voice activity

detector [5] to update the noise spectrum during the speech-

absent periods. The subspace methods used a different VAD

method [6] with threshold value set to 1.2. To assess the merit

of noise-estimation algorithms [7], two speech-enhancement

algorithms were implemented with both VAD and noise esti-

mation algorithms. These algorithms are indicated in Table 1

with the suffix ‘-ne’.

2The Wiener-type algorithms were grouped separately since these algo-

rithms estimate the complex spectrum while the statistical-model algorithms

estimate the magnitude spectrum in the mean square sense.
3No adjustments were made for algorithms (e.g., [12]) originally designed

for 16 kHz.

4. SUBJECTIVE EVALUATION

To reduce the length and cost of the subjective evaluations,

only a subset of the NOIZEUS corpus was processed by the

13 algorithms and submitted to Dynastat, Inc. for formal sub-

jective evaluation. A total of 20 sentences corrupted in four

background noise environments (car, street, babble and train)

at two levels of SNR (5dB and 10dB) were processed and pre-

sented to 32 listeners for evaluation. These sentences were

spoken by two male speakers and two female speakers.

The subjective tests were designed according to ITU-T

recommendation P.835. The P.835 methodology was designed

to reduce the listener’s uncertainty in a subjective test as to

which component(s) of a noisy speech signal, i.e., the speech

signal, the background noise, or both, should form the basis of

their ratings of overall quality. This method instructs the lis-

tener to successively attend to and rate the enhanced speech

signal on: a) the speech signal alone using a scale of signal

distortion (SIG) - [1= very unnatural, 5=very natural], b) the

background noise alone using a scale of background conspic-

uous/intrusiveness (BAK) - [1=very conspicuous, very intru-

sive, 5=not noticeable], c) the overall effect using the scale of

the Mean Opinion Score (OVRL) - [1=bad, 5=excellent].

The process of rating the signal and background of noisy

speech was designed to lead the listener to integrate the ef-

fects of both the signal and the background in making their

ratings of overall quality. Each trial in a P.835 test involves a

triad of speech samples – three samples of the test condition

where each sample is a short segment of speech recorded in

background noise, e.g., a single sentence. For each sample

within the triad, listeners successively used one of the three

five-point rating scales, SIG, BAK, and OVRL, to register

their judgments of the quality of the test condition. In addi-

tion to the experimental conditions, each experiment included

a number of reference conditions designed to independently

vary the listener’s SIG, BAK, and OVRL ratings over the en-

tire five-point range of the rating scales. More details about

the testing methodology can be found in [18]. The figures

show the mean scores for SIG, BAK, and OVRL scales for the

13 methods evaluated. The mean scores for the noisy speech

(unprocessed) files are also shown for reference.

5. DISCUSSION AND CONCLUSIONS

Of the two subspace algorithms examined, the generalized

subspace approach [8] performed consistently better in OVRL

scale across all SNR conditions and four types of noise. The

performance of these two methods was distinctively different

in +5dB car noise. Lower signal distortion (i.e., higher SIG

scores) were observed with the generalized subspace method

in most conditions. Of the five statistical-model based algo-

rithms examined, the log-MMSE and the perceptually moti-

vated MMSE (pM-MSE) algorithms performed the best. Per-

formance of the pMMSE algorithm was comparable to that
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of the MMSE algorithm which incorporated speech-presence

uncertainty (the pMMSE algorithm did not). Lower noise

distortion (i.e., high-er BAK scores) was obtained with the

pMMSE method in several conditions (5dB train, 5dB car,

10dB street). It was surprising to see that the noise-estimation

algorithm [7] did not provide significant improvements to the

performance of the log-MMSE algorithm (small improvements

were noted only in street noise). Incorporating speech-presence

uncertainty as per [12] did not improve the performance of the

log-MMSE algorithm. In fact, it degraded performance. Of

the two spectral-subtractive algorithms tested, the multi-band

spectral subtraction algorithm [15] performed consistently the

best across all conditions. Incorporating a noise-estimation

algorithm did not improve the performance of the reduced-

delay spectral subtraction algorithm. One possible explana-

tion for that is that the speech files were too brief in duration

to observe the real benefit of noise-estimation algorithms. Fi-

nally, of the three Wiener filtering type of algorithms, the

method proposed in [4] based on a priori SNR, performed

the best. This method also produced consistently the low-

est signal distortion comparable to the statistical-model based

methods. It did, however, suffer from high noise distortion.

Overall, the statistical-model based methods performed

the best across all conditions, followed by the multi-band spec-

tral subtraction method [15].
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5dB babble noise
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5dB street noise
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