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ABSTRACT

As with many approaches to noise robust automatic speech recog-

nition (ASR) the benefits of spectral subtraction tend to diminish as

noise levels in the order of 0 dB are approached. Whilst the majority

of related work focuses on reducing magnitude errors a number of

new approaches addressing the often overlooked, additional sources

of error have appeared in the literature in recent years. Relatively

lacking in the literature, however, is an empirical assessment which

compares the effects of each error when noisy speech is processed

by spectral subtraction. Such studies are vital in order to appreci-

ate the potential penalty in performance when sources of error are

overlooked.

The objective in this paper is to assess, through ASR, the per-

formance penalty associated with each source of error when noisy

speech is treated with spectral subtraction. Experimental evidence

based on two standard European databases and ASR protocols il-

lustrates that, perhaps contrary to popular belief, for noise levels in

the order of 0 dB and below, these often overlooked sources of error

can lead to non-negligible degradations in performance. Whilst not

a new idea, here the original emphasis is a thorough assessment that

empirically highlights both the fundamental limitations and poten-

tial benefit of including the full complement of errors in the spectral

subtraction model.

1. INTRODUCTION

Proposed by Boll in 1979 [1] spectral subtraction is one of the ear-

liest and longest standing approaches to noise compensation and

speech enhancement. As in the subsequent work of Lockwood et al

in 1991 [2], and this paper, the majority of recent literature with a

spectral subtraction theme focuses on noise robust automatic speech

recognition (ASR). A literature search reveals an abundance of re-

lated research papers, both long past and recent. However, despite

the many thousands of man hours spent optimising spectral subtrac-

tion, improvements in ASR performance tend to diminish as noise

levels in the order of 0 dB are approached. In fact, it is difficult

to find publications that report any improvements in intelligibility

through the processing of speech by spectral subtraction.

The early work of Lim in 1979 [3] provides a theoretical analy-

sis of the error sources associated with spectral subtraction, namely

phase, cross-term and magnitude errors. Whilst the majority of re-

lated work focuses on reducing magnitude errors a number of new

approaches addressing the additional error sources have appeared in

the literature in recent years. In 2004, noting that even given accu-

rate noise statistics the phase relationship between speech and noise

can lead to negative values in the processed spectrum, Xu et al [4]

showed that full-wave rectification better retains speech information

and provides optimum orthogonality between the estimated noise

and speech signals. Although aimed at feature enhancement as op-

posed to speech enhancement, Deng et al [5] proposed a new prob-

abilistic, nonlinear acoustic environment model to incorporate the

aforementioned phase relationship. A quantitative analysis of how

noise affects the speech spectrum is provided by Zhu and Alwan [6].

Relatively lacking in the literature, however, is an empirical as-

sessment which compares the effects of each error when noisy speech

is processed by spectral subtraction. Such studies are vital in order to

appreciate the potential penalty in performance when cross-term and

phase errors are neglected. Thus, building on our recently published

work [7] and providing a new interpretation, herein lie the objec-

tives of this paper, namely to assess, in terms of ASR word accuracy,

the performance of spectral subtraction with and without each error

source and hence to demonstrate the fundamental limitations.

The remainder of this paper is organised as follows. Section 2

describes a conventional implementation of spectral subtraction. The

fundamental limitations that are assessed in this paper are introduced

in Section 3. Section 4 describes the experimental setup. Results and

discussion are presented in Sections 5 and 6 and conclusions follow

in Section 7.

2. SPECTRAL SUBTRACTION

Spectral subtraction is not a recent approach to noise compensation

and was proposed by Boll in 1979 [1]. There is, however, much

more recent work in the literature relating to different implementa-

tions and configurations of spectral subtraction. Thus the objective

here is to describe what is perhaps best termed as a conventional

implementation of spectral subtraction drawing from [1, 8].

The goal of spectral subtraction is the suppression of additive

noise from a corrupt signal. Speech degraded by additive noise can

be represented by:

d(t) = s(t) + n(t), (1)

where d(t), s(t) and n(t) are the degraded or corrupt speech, orig-

inal clean speech (no added noise) and noise signals respectively.

From the discrete Fourier transform (DFT) of sliding frames typ-

ically in the order of 20-40 ms, an estimate of the original clean

speech is obtained in the frequency domain by subtracting the noise

estimate from the corrupt power spectrum:

|Ŝ(ejω)|2 = |D(ejω)|2 − |N̂(ejω)|2, (2)

where theˆsymbol indicates an estimate as opposed to observed sig-

nals. The assumption is thus made that noise reduction is achieved

by suppressing the effect of noise from the magnitude spectra only.

The subtraction process can be in power terms as in Equation 2 or

in true magnitude terms, i.e. using the square roots of the terms in

Equation 2.
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For speech enhancement applications, where a time domain rep-

resentation is sought, a complex estimate (magnitude and phase),

Ŝ(ejω), is required and in practice this is obtained by combining

the enhanced magnitude with the phase of the corrupt spectrum,

θD(ejω):

Ŝ(ejω) =
ˆ
|D(ejω)|2 − |N̂(ejω)|2

˜1/2
e

θD(ejω)
(3)

A time domain representation is then resynthesised via the in-

verse DFT. Negative values at any frequency, ω, occur whenever

|N̂(ejω)| > |D(ejω)| and thus generally necessitate some form

of post-processing prior to resynthesis since they have no physical

meaning.

Nearly all later work advocates noise over-estimates and noise

floors, as introduced by the early original work of Berouti et al [8].

Equation 3 is thus modified to:

Ŝ(ejω) = max
`ˆ

|D(ejω)|2 − α|N̂(ejω)|2
˜
,

β|D(ejω)|2
´1/2

e
θD(ejω)

, (4)

where α is the noise over-estimation parameter and β is the noise

floor as in [2, 8]. The idea is to increase noise attenuation through α

and to suppress musical noise and negative values in the processed

magnitude spectrum through β. Both α and β are tunable parameters

and are optimised according to the noise level.

3. FUNDAMENTAL LIMITATIONS

The objective in this section is to introduce the sources of error in

a conventional implementation of spectral subtraction. In [3] it is

shown that the clean speech spectrum, S(ejω), in exact terms, is

expressed by:

S(ejω) =
ˆ
|D(ejω)|2 − |N(ejω)|2 − S(ejω) · N∗(ejω)

−S
∗(ejω) · N(ejω)

˜1/2
e

θS(ejω)
, (5)

where * denotes the complex conjugate. S(ejω) · N∗(ejω) and

S∗(ejω)·N(ejω), termed throughout this paper as cross-terms to re-

flect the above notation, may alternatively be reduced to

2 · |S(ejω)| · |N(ejω)| · cosθ where θ represents the phase differ-

ence between S(ejω) and N(ejω).

The three sources of error inherent in a conventional implemen-

tation of spectral subtraction are thus evident upon the comparison

of Equations 3 and 5. They are phase, cross-term and magnitude

errors.

3.1. Phase Errors

Phase errors do not ordinarily affect ASR performance when features

are derived from the same short term magnitude spectra used in the

spectral subtraction process. However, returning to a time domain

representation of the processed speech will introduce phase errors

associated with the differences between θS(ejω) and θD(ejω) and

will influence subsequent feature extraction. Phase errors are con-

sidered in this paper to embrace situations where it is desirable to

produce an enhanced time domain speech signal as an intermediary

stage before ASR, i.e. where the enhanced speech data is communi-

cated rather than their features as in the ETSI Aurora 2 distributed

ASR ethos. Utilising noise over-estimates and noise floors, the effect

of phase errors may be assessed by modifying Equation 5 to:

Ŝ(ejω) = max
`ˆ

|D(ejω)|2−α|N(ejω)|2−S(ejω) · N∗(ejω)

− S
∗(ejω) · N(ejω)

˜
, β|D(ejω)|2

´1/2
e

θD(ejω)
(6)

3.2. Cross-term Errors

Cross-term errors are also commonly assumed to have a negligi-

ble influence since, in the expected sense, S(ejω) · N∗(ejω) and

S∗(ejω) · N(ejω), average to zero and are generally omitted. To

include cross-term errors only and resynthesising with the phase of

the original speech, θS(ejω) (i.e. no phase errors), the subtraction is

then implemented as:

Ŝ(ejω) = max
`ˆ

|D(ejω)|2 − α|N(ejω)|2
˜
,

β|D(ejω)|2
´1/2

e
θS(ejω)

(7)

Note that even though cross-terms are related to the phase differ-

ence between the clean speech and noise they affect the magnitude

in Equation 5.

3.3. Magnitude Errors

The third and final source of errors lies in the differences between

|N(ejω)| and |N̂(ejω)| and are referred to as magnitude errors thr-

oughout this paper. Of course cross-term errors also constitute mag-

nitude errors but two separate definitions are adopted to reflect the

general assumption that cross-term errors are negligible, i.e. in prac-

tice the procedure focuses only on obtaining effective estimates of

|N(ejω)|.
The contribution of magnitude errors may be assessed by com-

paring the performance of spectral subtraction with known values of

|N(ejω)| to the performance with estimated values, |N̂(ejω)|. The

two spectral subtraction equations are then given by Equation 7, ex-

cept with eθS(ejω) replaced by eθD(ejω), and by Equation 4. Note

that in both cases phase and cross-term errors are present, the only

differences are then between |N(ejω)| and |N̂(ejω)|.

4. EXPERIMENTAL SETUP

The objective of this paper is to compare, through ASR, the impact

of phase, cross-term and magnitude errors when noisy speech is pro-

cessed with spectral subtraction. First though, the ASR databases

and recogniser configuration are described.

4.1. Databases

The ASR experiments reported in this paper were performed on the

standard ETSI Aurora 2 database [9] and the Welsh SpeechDat(II)

FDB-2000 database [10], hereafter referred to as the WSD(II)

database. The Aurora 2 database comprises digit strings spoken by

American English speakers. The car noise subset of the Aurora 2

database was selected and is justified by the popular application of

spectral subtraction to in-car, noise robust ASR. The standard speci-

fies 8440 training utterances and 1001 test utterances for each noise

level. Full details of the Aurora 2 database can be found in [9].

The WSD(II) database comprises isolated digits recorded from

members of the Welsh speaking public. Car noise from the Au-

rora 2 database was used to create a car noise subset of the WSD(II)

database. There are 100 speaker training utterances and 1500 speaker

test utterances. Full details of the configuration of the WSD(II)

database can be found in [7, 10].

According to the Aurora 2 standard there are six different noise

levels ranging from SNRs between +20 dB and -5 dB in addition to

a seventh clean (no added noise) condition for both databases.
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4.2. Spectral Subtraction Implementation

Spectral subtraction is adopted as a pre-processing, speech enhance-

ment stage and a time domain representation of the enhanced sig-

nal is resynthesised prior to feature extraction. All improvements

in ASR performance may therefore be attributed to spectral subtrac-

tion and not to any modifications to either the feature extraction or

recognition stages. The clean speech and noise data were obtained

by subtracting the noisy files from the original clean speech files in

the time domain, sample by sample. The complex, frequency do-

main representations of the clean speech, S(ejω), corrupt speech,

D(ejω), and corresponding noise, N(ejω), were then all derived us-

ing the discrete Fourier transform (DFT) from frames of 32 ms with

an overlap of 16 ms. The phase of both the degraded and original

speech as well as the cross-terms in Equation 5 are then all avail-

able, thus the contribution to the degradation in spectral subtraction

performance due to each error may be assessed. In all cases the

noise over-estimate, α, and noise floor, β, in Equations 4, 6 and 7

are empirically optimised for each condition separately.

The noise estimate in Equation 2 is conventionally obtained dur-

ing non-speech intervals and in the frequency domain from short

term magnitude spectra. This approach is adopted for the exper-

iments on the WSD(II) database and utilises 0.5 s hand-labelled

non-speech intervals. However, the Aurora 2 database is not hand-

labelled and so an alternative approach to noise estimation is re-

quired. Due to well known difficulties associated with accurate end-

point detection, particularly under high noise conditions, quantile-

based noise estimation (QBNE) [11] was used for all experiments on

the Aurora 2 database. The main advantage of the quantile-based ap-

proach is that explicit speech, non-speech detection is not required.

Instead, speech and non-speech regions are detected implicitly and

the estimation process is continuous, spanning 0.75 s windows in

both speech and non-speech intervals. In [12] the Authors’ previ-

ously published work assessed QBNE on the same database demon-

strating very favourable results.

4.3. ASR Configuration

In order to follow wholly standard experimental protocols the Au-

rora 2 W1007 standard feature extractor and HTK reference recog-

niser were used for ASR experiments, the full details of which can

be found in [9]. In summary, 39th order feature vectors consisting

of cepstral, delta and acceleration coefficients and log energy are ex-

tracted from 25 ms frames with 10 ms overlap. Whole word HMMs

are trained with simple left-to-right models.

5. EXPERIMENTAL RESULTS

The original contributions of this work relate not to the optimisation

but rather to an assessment of the fundamental limitations of spectral

subtraction. The contribution of phase, cross-term and magnitude

errors to the degradation in spectral subtraction performance is as-

sessed as a function of SNR in terms of ASR word accuracy. Results

are presented in Figure 1 for the Aurora 2 database in (a) and for the

WSD(II) database in (b). The lowest profile in both figures corre-

sponds to the baseline performance, i.e. without treatment by spec-

tral subtraction. Without added noise baseline accuracies of 99%

and 89% are observed for the two databases respectively. The dif-

ferences in word accuracies at higher SNRs can be attributed to the

different quantities of training data: 8440 for Aurora 2 c.f. 100 for

WSD(II). At lower SNRs the superior performance of the WSD(II)

database can be attributed to the hand-labelling of speech periods.

The first profiles illustrate the effect of phase errors. Using the

corrupt speech phase to resynthesise the processed speech in the time

domain, a negligible decrease in word accuracy is observed. At

-5 dB phase errors cause a drop in word accuracy from 99% with-

out added noise to 97% for the Aurora 2 database and from 89%

without added noise to 86% for the WSD(II) database. Thus phase

errors contribute very little to ASR performance degradation.

The second profiles illustrate the effect of cross-term errors

which also appear to be negligible as the noise level increases to

+5 dB. However, as the noise level increases further the degradation

becomes non-negligible and, at -5 dB, the word accuracy falls to

90% and 66% for the Aurora 2 and WSD(II) databases respectively.

The next two profiles illustrate the performance of spectral sub-

traction with combined phase and cross-term errors, first with the ac-

tual noise values, |N(ejω)| (third profile), and then with estimates,

|N̂(ejω)| (fourth profile). Therefore the third profiles illustrate the

fundamental limitations of spectral subtraction, given that phase and

cross-term errors are generally ignored and indicate the likely op-

timal performance if a perfect estimate of the noise magnitude is

applied. Word accuracies of 97% and 81% at +5 dB fall to 85%

and 62% at -5 dB for the Aurora 2 and WSD(II) databases respec-

tively. The profiles show that combined phase and cross-term errors

again lead to negligible degradations for higher SNRs but that this

increases to non-negligible levels as the SNR falls below 0 dB.

The objective now is to assess the performance of spectral sub-

traction in a practical scenario with a full complement of errors. The

experiments thus relate to realistic conditions except perhaps that

there is a constant, controlled SNR for each experiment. The fourth

profiles confirm that the greatest contribution to ASR performance

degradation is from magnitude errors. For the Aurora 2 database

a word accuracy of 97% without magnitude errors falls to 77% at

+5 dB and at -5 dB, a word accuracy of 85% without magnitude er-

rors falls to 17% with magnitude errors. The differences are not so

great for the WSD(II) database: 81% falls to 64% at +5 dB and 62%

falls to 34% at -5 dB.

6. DISCUSSION

The two graphs in Figure 1 compare the contribution to ASR per-

formance degradation when noisy speech is processed by spectral

subtraction with phase, cross-term and magnitude errors. In both

figures the top four profiles illustrate the degradation in ASR perfor-

mance as each error is introduced. Magnitude errors are confirmed

to produce greater degradations in ASR performance than phase and

cross-term errors but, perhaps contrary to popular belief, as noise

levels in the order of 0 dB are approached and exceeded, phase and

cross-term errors can also make contributions that are not negligible.

The degradations in ASR performance caused by phase and

cross-term errors is significantly less pronounced for the Aurora 2

database than for the WSD(II) database. This difference could be

attributed to the greater quantity of training data for the Aurora 2

database which ensures a lesser degradation as phase and cross-term

errors are introduced. However, given that noise estimates come

from QBNE during both speech and non-speech intervals, the noise

estimate is comparatively poor and as magnitude errors are intro-

duced the degradation in ASR performance is more rapid. This

would suggest that the contribution of magnitude errors is exagger-

ated in the case of results pertaining to the Aurora 2 database and that

consequently the contribution of phase and cross-term errors might

be proportionately greater than that illustrated.

The performance of speech enhancement in an ASR context is

often gauged against the performance under clean conditions. For
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Fig. 1. ASR word accuracies for (a) the Aurora 2 database and (b) the WSD(II) database. Profiles illustrate, from top to bottom, ASR

performance with phase errors (first profile), cross-term errors (second profile), combined phase and cross-term errors (third profile), combined

phase, cross-term and magnitude errors (fourth profile) and for the baseline without treatment by spectral subtraction (fifth profile).

spectral subtraction, whilst this comparison is reasonable, it does not

take into account the fundamental limitations that this experimental

work highlights. In the application of spectral subtraction to speech

enhancement considered here, unless the phase and cross-term errors

are taken into consideration, ASR performance following spectral

subtraction is likely to fall short of that under clean conditions, even

with a perfect estimate of the noise magnitude.

7. CONCLUSIONS

There are three fundamental sources of error in a conventional im-

plementation of spectral subtraction, namely phase, cross-term and

magnitude errors. However, research efforts since the debut of spec-

tral subtraction in 1979 often focus on obtaining the best possible es-

timates of the noise magnitude and neglect the remaining sources of

error. This paper empirically highlights both the fundamental limita-

tions of spectral subtraction and also the potential benefit of recently

published works (e.g. [4–6]) that account for additional sources of

error in the spectral subtraction model. Experimental results based

on two standard European databases and ASR protocols confirm that

errors in the magnitude do indeed make the greatest contribution to

ASR performance degradation. However, as noise levels in the order

of 0 dB are approached and exceeded the contributions of phase and

cross-term errors are apparent and lead to non-negligible degrada-

tions in ASR performance. Future noise compensation and speech

enhancement research should thus not only consider improved ap-

proaches to noise estimation in magnitude terms but also phase and

cross-term errors, particularly at poor SNRs.
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