
A Comparative Study of Discriminative Methods for Reranking

LVCSR N-Best Hypotheses in Domain Adaptation and Generalization

Zhengyu Zhou* Jianfeng Gao, Frank K. Soong and Helen Meng*

Microsoft Research
{jfgao, frankkps}@microsoft.com

*The Chinese University of Hong Kong, Hong Kong
*{zyzhou, hmmeng}@se.cuhk.edu.hk

ABSTRACT

This paper is an empirical study on the performance of different

discriminative approaches to reranking the N-best hypotheses

output from a large vocabulary continuous speech recognizer

(LVCSR). Four algorithms, namely perceptron, boosting,

ranking support vector machine (SVM) and minimum sample risk

(MSR), are compared in terms of domain adaptation,

generalization and time efficiency. In our experiments on

Mandarin dictation speech, we found that for domain adaptation,

perceptron performs the best; for generalization, boosting performs

the best. The best result on a domain-specific test set is achieved

by the perceptron algorithm. A relative character error rate (CER)

reduction of 11% over the baseline was obtained. The best result

on a general test set is 3.4% CER reduction over the baseline,

achieved by the boosting algorithm.

1. INTRODUCTION

The current state-of-the-art large vocabulary speech recognition

system optimizes its parameters under the framework of maximum

likelihood estimation. Recently, researchers adopt discriminative

training approaches, whose objective is to minimize training error

of the recognition system [1, 2, 3, 5, 12]. This work attempts to

utilize various discriminative algorithms to improve LVCSR

performance by reranking the N-best hypotheses.

There have been several previous efforts on discriminative

reranking [1, 2, 5]. For example, [1] investigated the use of the

perceptron algorithm under various training scenarios. Our paper

follows the work in problem definition and feature selection, as

well as extends the research by comparing different discriminative

algorithms in terms of their performances in domain adaptation,

generalization and time efficiency.

Domain adaptation refers to adapting a general LVCSR to a

specific domain by using a domain-specific training corpus. In

this paper, the domain-specific corpus refers to a novel-domain

corpus, while the general corpus refers to a mix of different

corpora, balanced among domains, styles and time. The baseline

general LVCSR is trained on the general corpus. In domain

adaptation experiments, we attempt to adapt the baseline LVCSR

to the novel domain. Among the four algorithms we compared,

i.e., perceptron, boosting, ranking SVM and MSR, the perceptron

* The work was done while the first author was visiting

Microsoft Research Asia.

algorithm performs the best for domain adaptation, reducing the

CER on a novel-domain test set from 20.0% to 17.8%.

Generalization in this work refers to the capability of

generalizing the error reduction on domain-specific training data to

a general test set. The objective to evaluate the discriminative

algorithms in terms of generalization is to test the possibility of

utilizing a domain-specific corpus to improve baseline LVCSR

performance on general test set. This is especially meaningful

because obtaining a large general speech corpus can be very

difficult. In our generalization experiments, we attempt to

improve the baseline system on general domain by training on the

novel-domain corpus. The experimental results show that

although the perceptron algorithm performs the best for domain

adaptation, it performs the worst for generalization. Instead,

boosting and ranking SVM (if ignore the training inefficiency of

SVM) perform equally well, reducing the CER on a Mandarin

general test set from 8.9% to 8.6%.

Our comparative study of discriminative algorithms on

domain adaptation and generalization shows that it is beneficial to

choose a suitable algorithm based on how well the training data

matches the objective test data. We also prove that it is possible

to use a domain-specific corpus to improve LVCSR performance

by discriminative methods.

Three of the four algorithms in this study, namely perceptron,

boosting and MSR, have previously been compare in [8] in the

context of language model adaptation. This paper is the first

work on comparing and analyzing the four algorithms in terms of

both domain adaptation and generalization. Extending the work

of [1], this is also the first attempt in applying the four

discriminative algorithms for reranking LVCSR N-best hypotheses

under a simple linear framework.

The rest of the paper is organized as follows: We first

present the four discriminative algorithms, then describe the

experiments. Finally, we compare and analyze in terms of

relative performances of the algorithms.

2. DISCRIMINATIVE ALGORITHMS

This section follows [1] in defining the N-best reranking task as a

linear discrimination problem. We then describe the four

discriminative algorithms sequentially under this linear framework.

2.1 Problem definition

We set up the N-best reranking task based on the definitions and

notations adapted from [7,8]:

• In the training data set, there are n speech utterances, and ni

I 141142440469X/06/$20.00 ©2006 IEEE ICASSP 2006

sentence hypotheses for each utterance. Define xi,j as the j-th

hypothesis of the i-th utterance. Define xi,R as the best

utterance (the one with lowest CER) among { xi,j }.

• There is a separate test set of yi,j with similar definitions as the

training set.

• Define D+1 features)(hfd
, d=0…D, h is a hypothesis. The

features could be arbitrary functions mapping h to real values.

Define the feature vector)}(),..(),({)(10 hfhfhfhf D=
r

.

• Define a discriminant function

=

=
D

i

ii hfwhg
0

)()(. The

decoding problem becomes searching for a w
r

that satisfies

the following conditions on the test set:

Rjiygyg jiRi ≠∀∀>)()(,,

2.2 The perceptron algorithm

The perceptron algorithm views the N-best reranking task as a

binary classification problem, attempting to find a vector w
r

which

minimizes the classification errors on training data. Instead of

minimizing the training error directly, perceptron optimizes a

minimum square error (MSE) loss function.

We adopt the average perceptron algorithm presented in [9]

in our experiments. This approach first updates w
r

by the standard

iterative perceptron algorithm, as shown in Figure 1, then

averages w
r

using the formula below:

)/()()(
1 1

, ntww
t

i

n

j

ji

davgd ⋅=
= =

 (1)

where ji

dw , is the value for wd after processing j training utterances

in the ith iteration, t is the total number of iterations. Averaging

the weights is to increase the model robustness [9].

1 Set w0 = 1 and wd = 0, d = 1…D

2 For j = 1…t (t is the total number of iterations)

3 For each ni, i = 1…n
4 Choose the xi,j with the largest g(xi,j) value

5 For each wd (η = size of learning step)

6))()((,, jidRiddd xfxfww −+= η
 Figure 1. The perceptron algorithm

2.3 The boosting algorithm

Boosting has been applied to several speech recognition tasks [2, 4].

But previous work mainly focused on acoustic modeling. The

boosting algorithm described in this work focuses on modeling

linguistic features, and attempts to minimize the ranking error on

training data. This algorithm is based on [7]. It uses the following

loss function to approximate the minimum ranking error.

= =

−−=
n

i

n

j

ji

t

i

t
i

xfwxfwIwBLoss
1 2

,1,)])()([exp()(
r

r

r

rr (2)

where I[]=1 if 0, and 0 otherwise. Without loss of

generality, here we assume that
Rix ,

always corresponds to
1,ix .

The boosting algorithm also uses an iterative approach [7, 8]

to estimate w
r

, as shown in Figure 2. At each iteration, only one

feature which contributes most to reducing the boosting loss

function is chosen and its weight is updated. Details about feature

selection and weight updating are described in [7]. Our boosting

approach differs from the AdaBoost algorithm [4] in that it focuses

on the most distinguishing features from the very beginning.

1 Set w0 = 1 and wd = 0, d = 1…D

2 Select a feature
df which has largest estimated impact on

reducing the value of boosting loss function.

3 Update wd, and return to step 2.

 Figure 2. The boosting algorithm

2.4 The ranking SVM algorithm

SVM has been used for both classification and ranking problems.

We select the ranking SVM algorithm [10] because of the

unbalance nature of our data sets, implementing the method by

using the SVM-light toolkits [11].

The ranking SVM algorithm uses below loss function to

approximate the minimum training error:

+⋅= jiCwwwSLoss ,
2

1
),(ξξ rr

r

r (3)

This function is minimized subject to:

)1(,1)()(,1,,,1, ≠∀−≥⋅−⋅ jxxxfwxfw jiijijii

rr

r

r

r

r ξ (4)

jiji ∀∀≥ 0,ξ (5)

where C is a parameter trading off margin size against training

error, and
ji ,ξ denote slack variables.

Inequality (4) shows that this optimization problem is a

classification problem on)()(,1, jii xfxf
rr

− , thus can be solved by

decomposition algorithms for classification SVM.

2.5 The minimum sample risk algorithm

While all the above discriminative training methods use a loss

function suitable for gradient search to simulate the minimum

training error, MSR [12] attempts to minimize the training error

directly. MSR first reduce the whole feature set to a small subset

of highly distinguishing features, to reduce computational

complexity and to ensure the generalization property. Then, in

each iteration, the weights are updated one by one with a grid line

search method.

Figure 4 shows the basic process of the MSR algorithm. A

complete description of its implementation and the empirical

justification are described in [12].

1 Set w0 = 1 and wd = 0, d = 1…D

2 Rank all features by its expected impact on reducing training

error, and select the top N features

3 For j = 1…t (t is the total number of iterations)

4 For each n = 1…N

5 Update wn using linear search

 Figure 3. The MSR algorithm

3. EXPERIMENTS

3.1 Data sets

We compare the 4 discriminative training algorithms presented

above on the task of Chinese dictation. We used two Mandarin

dictation speech corpora in our experiments. One is a large

novel-domain speech corpus with a balanced set of speakers in

terms of gender and age. The other is a standard general-domain

data test set (GTe-Set). We further divided the novel-domain

corpus into the domain-specific training set (DTr-Set) and the

domain-specific test set ((DTe-Set) in the following way: In every

five utterances, we used the first four utterances for training and the

fifth for testing. Table 1 shows the statistics of the three data sets.

I 142

Data Sets Task Utterance Count Domain

DTr_Set Training 84,498 Novel

DTe_Set Testing 21,123 Novel

GTe_Set Testing 500 General

Table 1. Data sets

The background (or baseline) LVCSR is a well-trained,

general LVCSR. For acoustic modeling, the cross-word triphone

models are trained on a seprate Mandarin dictation speech corpus

of about 700 hours, collected by considering the distribution of

gender and age throughout the recording. For language modeling,

the trigram model is trained on about 28G (disk size) text corpora,

balanced among different domains. We attempt to improve the

baseline LVCSR by reranking its N-best output using

discriminative methods.

3.2 Feature selection

For each of the N-best hypothesis h we select its recognizer score

(an interpolation of the acoustic and language model scores) as the

base feature f0. We define the remaining features, fi(h), i = 1…D,

as unigram/bigram features in the following way:

1. Assign each word unigram/bigram a unique id i i = 1…D

2. fi(h) is the count of the unigram/bigram with id i in h.

3.3 Evaluation metrics

We adopt two evaluation metrics for comparison purposes: (1)

character error rate (CER), measured by the edit distance of

character; (2) training time, which is estimated on a server with

Intel Xeon CPU of 3.20 GHz.

3.4 Algorithm comparison

In this subsection, we compare the performances of perceptron,

boosting, ranking SVM and MSR on the two test sets. Due to the

training inefficiency of the ranking SVM, only the top 20

hypotheses were adopted in training. We used 100-best

hypotheses in testing. The results of the comparisons are shown

in the table below.

Algorithm Training Time DTe-Set

CER %

GTe-Set

CER %

Baseline -- 20.04 8.90

Perceptron 27 minutes 17.83 8.79

Boosting 16 minutes 19.35 8.60

MSR 16 minutes 19.00 8.87

Ranking SVM 54.8 hours 19.30 8.60

Oracle -- 11.29 4.16

Table 2. Comparison of discriminative algorithms

for reranking LVCSR N-best hypotheses

In Table 2, “Baseline” refers to the CER of the recognizer

outputs, i.e., the top-scoring hypotheses. “Oracle” refers to the

CER of the best hypotheses (the ones with lowest CERs) among

the 100-best hypotheses. Since the recognizer is a well-trained

general domain LVCSR, the baseline performance on the general

dictation test set (GTe_Set) achieved a very low error rate. Since

DTe_Set is a domain-specific test set with a high perplexity when

measured by the language model of the recognizer, the recognition

performance of baseline is worse, as expected.

 In the above table, the results reported for perceptron are the

performances after 40 iterations, while the results reported for

boosting and MSR are the performances after 2000 iterations.

Notice that changing iteration numbers may lead to different

algorithm performance rankings. Figure 4 and Figure 5 show the

CER changes when the number of iterations increases from 1 to 40

for perceptron, and from 1 to 2000 for boosting and MSR. The

rank of the iterative algorithms is consistent on DTe_Set, as shown

in Figure 4. On the other hand, as shown in Figure 5, it is much

harder to compare the algorithms on GTe_Set. For examples, in

Figure 5, CER curves of Perceptron and MSR are crossed, and it is

difficult to make a conclusion about which method is superior.

However, although the behaviors of the three iterative algorithms

on GTe_Set are chaotic, the boosting algorithm seems to

outperform the others, unlike the case of DTe_Set. We will

present a detailed discussion in the next session.

4. DISCUSSION

4.1 Domain adaptation vs. Generalization

The background LVCSR is on general-domain and the

discriminative training set is on novel-domain. Thus, the

performance of the discriminative algorithms on the novel-domain

test set DTe_Set can be viewed as the effects of the algorithms on

domain adaptation, adapting the general LVCSR to novel-domain

using novel-domain data. Similarly, the algorithms’ performance

on the general test set GTe_Set can be viewed as their effects on

generalization, generalizing the error reduction on domain-specific

training data to general test data.

 The experiment results in Section 3 suggest the following

observations for domain-adaptation and generalization.

Observation 1: For domain adaptation, perceptron performs the

best, shown in Figure 4 and Table 2.

Observation 2: For generalization, perceptron performs the worst

and boosting performs the best in most of the iterations, as shown

in Figure 5 and Table 2. While perceptron and MSR fluctuate

dramatically in Figure 5, boosting shows a gentle declination in

CER with increasing iterations.

Figure 5. Comparison on GTe_Set

8.3

8.4

8.5

8.6

8.7

8.8

8.9

9.0

of iterations

CER

perceptron

boosting

msr

baseline

Figure 4. Comparison on DTe_Set

16.5

17.0

17.5

18.0

18.5

19.0

19.5

20.0

20.5

of iterations

CER

perceptron

boosting

msr

baseline

I 143

Observation 3: Ranking SVM provides similar CER reduction as

the boosting method for both domain adaptation and generalization,

as shown in Table 2.

 We attempt to explain the 1st observation for domain

adaptation as follows: During feature selecting and tuning,

perceptron treats all training samples equally while the other three

algorithms only concentrate on the most distinguishing samples [6,

11, 12]. Thus, perceptron tunes a largest set of features, making

the resulting model fit the domain best.

 The second observation relating to generalization is mainly

due to mismatches between training and test data. In the

domain-specific training data, there are two knowledge sources.

One is domain-specific knowledge, referring to the rules which are

applicable only in the specific domain. The other is general

knowledge, referring to the rules which are also applicable in

general. When testing on the general test set, the discriminating

power of the features tuned to capture general knowledge will be

affected by those features tuned to capture the (interfering)

domain-specific knowledge. So, the performance on general test

set will be the competing result of the discriminating and

interfering powers. For perceptron, the great fluctuation and the

poor performance of the resulting model show that perceptron

tends to assign heavier weights to domain-specific information than

other algorithms. This is because of its undistinguishing way of

selecting and tuning features. For boosting, the rough decline

with much less fluctuation shows that boosting emphasizes more

on general knowledge during feature selection and tuning, which

implies that the features for general knowledge are more

distinguishing than the features for domain knowledge. The

reason is that in the novel domain, many linguistic phenomena only

appear sparsely, while a general rule may occur everywhere.

Thus, when considering the distinguishing power over the whole

training data, the features tuned for general knowledge will be

more favored by the boosting algorithm. For MSR, the results

show that MSR’s attitude towards the general knowledge and

domain knowledge is more balanced than perceptron and boosting.

 The third observation is because although boosting and SVM

adopt different loss functions and training approaches, they both

attempt to maximize the minimum margin of any training sample

and concentrate on the samples with smallest margin during the

training [6, 11]. The two algorithms are similar in this sense.

The three observations can also be explained in terms of bias

and variance. All these experimental results indicate that for

perceptron, the bias is low and the variance is high. On the other

hand, for boosting and SVM, the situation is reversed. MSR is

somewhere in the middle. While low variance indicates a better

generalization property, high variance may lead to better

performance on domain adaptation. Based on the algorithms’

characteristics, we can always select a suitable method for a given

discriminative training /testing scenario.

4.2 Time efficiency

In Table 2, we can see that the ranking SVM algorithm needs much

more training time than other algorithms. While getting the final

perceptron/boosting/MSR model takes less than 30 minutes,

training a SVM model takes about 55 hours. This is due to the

heavy computational load of quadratic programming for SVM.

However, since we do not use kernels for the ranking SVM

algorithm in this work, the testing is almost equally efficient for all

the four algorithms.

5. CONCLUSIONS

In this paper, we attempt to improve LVCSR performance by

reranking its N-best hypotheses, using various discriminative

approaches. Given a novel-domain training set, we found that

discriminative reranking not only improves the recognition

performance on the novel-domain test set, but also on the general

test set. The best CER reduction on the general test set is from

8.9% to 8.6%; while the best CER reduction on the novel-domain

test set is from 20.0% to 17.8%. This observation is especially

meaningful when a large general training corpus is unavailable.

We further compared the four discriminative algorithms in terms of

domain adaptation, generalization and time efficiency. The

results indicate that perceptron performs the best for domain

adaptation while boosting and ranking SVM obtain the greatest

error reduction for domain generalization. However, ranking

SVM is inefficient for training, and this will be an obstacle.

6. ACKNOWLEDGMENTS

Many thanks to Ye Tian, Yu Shi, Jianlai Zhou, Frank Seide, Peng

Yu from Microsoft Research Asia, Wei Yuan from the Shanghai

Jiaotong University, Guihong Cao from the University of Montreal

for their helps in this work. This project was partially supported

by the HKSAR government under Central Allocation CUHK1/02C

and also affiliated with the Microsoft-CUHK Joint Laboratory for

Human-centric Computing and Interface Technologies.

7. REFERENCES

[1] B. Roark, M. Saraclar, and M. Collins, “Corrective language

modeling for large vocabulary ASR with the perceptron

algorithm”, Proc. ICASSP, 2004.

[2] R. Zhang, and A.I. Rudnicky, “Apply N-best list re-ranking to

acoustic model combinations of Boosting Training”, Proc.

ICSLP, 2004.

[3] A. Stolcke and M. Weintraub, “Discriminative language

modeling”, Proc. of the 9th Hub-5 Conversational Speech

Recognition Workshop, 1998.

[4] C. Meyer, “Utterance-level boosting of HMM speech

recognizers”, Proc. ICASSP, 2002.

[5] V. Goel and W. Byrne, “Minimum bayes-risk automatic

speech recognition”, Computer Speech and Language, 14(2),

pp. 115-135, 2000.

[6] R.E. Schapire, Y. Freund, P. Bartlett, and W.S. Lee,

“Boosting the margin: A new explanation for the effectiveness

of voting methods”, The Annals of Statistics, 26(5), pp.

1651-1686, Oct. 1998.

[7] M. Collins, “Discriminative reranking for natural language

parsing”, Proc. ICML, 2000.

[8] H. Suzuki, J. Gao, “A comparative study on language model

adaptation techniques using new evaluation metrics”, Proc.

HLT/EMNLP, 2005.

[9] M. Collins, “Discriminative training methods for hidden

markov models: theory and experiments with perceptron

Algorithms”, Proc. EMNLP, 2002

[10] T. Joachims, “Optimizing search engines using clickthrough

data”, Proc. ACM, 2002.

[11] T. Joachims, Making large-scale SVM learning practical.

advances in kernel methods - support vector learning,

MIT-Press, 1999.

[12] J. Gao, H. Yu, W. Yuan and P. Xu, “Minimum sample risk

methods for language modeling”, Proc. HLT/EMNLP 2005.

I 144

