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ABSTRACT 

This paper is an empirical study on the performance of different 

discriminative approaches to reranking the N-best hypotheses 

output from a large vocabulary continuous speech recognizer 

(LVCSR).  Four algorithms, namely perceptron, boosting, 

ranking support vector machine  (SVM) and minimum sample risk 

(MSR), are compared in terms of domain adaptation, 

generalization and time efficiency.  In our experiments on 

Mandarin dictation speech, we found that for domain adaptation, 

perceptron performs the best; for generalization, boosting performs 

the best.  The best result on a domain-specific test set is achieved 

by the perceptron algorithm.  A relative character error rate (CER) 

reduction of 11% over the baseline was obtained.  The best result 

on a general test set is 3.4% CER reduction over the baseline, 

achieved by the boosting algorithm. 

1. INTRODUCTION 

The current state-of-the-art large vocabulary speech recognition 

system optimizes its parameters under the framework of maximum 

likelihood estimation.  Recently, researchers adopt discriminative 

training approaches, whose objective is to minimize training error 

of the recognition system [1, 2, 3, 5, 12].  This work attempts to 

utilize various discriminative algorithms to improve LVCSR 

performance by reranking the N-best hypotheses. 

There have been several previous efforts on discriminative 

reranking [1, 2, 5].  For example, [1] investigated the use of the 

perceptron algorithm under various training scenarios.  Our paper 

follows the work in problem definition and feature selection, as 

well as extends the research by comparing different discriminative 

algorithms in terms of their performances in domain adaptation, 

generalization and time efficiency.   

Domain adaptation refers to adapting a general LVCSR to a 

specific domain by using a domain-specific training corpus.  In 

this paper, the domain-specific corpus refers to a novel-domain 

corpus, while the general corpus refers to a mix of different 

corpora, balanced among domains, styles and time.  The baseline 

general LVCSR is trained on the general corpus.  In domain 

adaptation experiments, we attempt to adapt the baseline LVCSR 

to the novel domain.  Among the four algorithms we compared, 

i.e., perceptron, boosting, ranking SVM and MSR, the perceptron 
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algorithm performs the best for domain adaptation, reducing the 

CER on a novel-domain test set from 20.0% to 17.8%. 

Generalization in this work refers to the capability of 

generalizing the error reduction on domain-specific training data to 

a general test set.  The objective to evaluate the discriminative 

algorithms in terms of generalization is to test the possibility of 

utilizing a domain-specific corpus to improve baseline LVCSR 

performance on general test set.  This is especially meaningful 

because obtaining a large general speech corpus can be very 

difficult.  In our generalization experiments, we attempt to 

improve the baseline system on general domain by training on the 

novel-domain corpus.  The experimental results show that 

although the perceptron algorithm performs the best for domain 

adaptation, it performs the worst for generalization.  Instead, 

boosting and ranking SVM (if ignore the training inefficiency of 

SVM) perform equally well, reducing the CER on a Mandarin 

general test set from 8.9% to 8.6%. 

Our comparative study of discriminative algorithms on 

domain adaptation and generalization shows that it is beneficial to 

choose a suitable algorithm based on how well the training data 

matches the objective test data.  We also prove that it is possible 

to use a domain-specific corpus to improve LVCSR performance 

by discriminative methods. 

Three of the four algorithms in this study, namely perceptron, 

boosting and MSR, have previously been compare in [8] in the 

context of language model adaptation.  This paper is the first 

work on comparing and analyzing the four algorithms in terms of 

both domain adaptation and generalization.  Extending the work 

of [1], this is also the first attempt in applying the four 

discriminative algorithms for reranking LVCSR N-best hypotheses 

under a simple linear framework. 

The rest of the paper is organized as follows:  We first 

present the four discriminative algorithms, then describe the 

experiments.  Finally, we compare and analyze in terms of 

relative performances of the algorithms. 

2. DISCRIMINATIVE ALGORITHMS 

This section follows [1] in defining the N-best reranking task as a 

linear discrimination problem. We then describe the four 

discriminative algorithms sequentially under this linear framework.

2.1 Problem definition 

We set up the N-best reranking task based on the definitions and 

notations adapted from [7,8]: 

• In the training data set, there are n speech utterances, and ni
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sentence hypotheses for each utterance.  Define xi,j as the j-th 

hypothesis of the i-th utterance.  Define xi,R as the best 

utterance (the one with lowest CER) among { xi,j }.   

• There is a separate test set of yi,j with similar definitions as the 

training set. 

• Define D+1 features )(hfd
, d=0…D, h is a hypothesis.  The 

features could be arbitrary functions mapping h to real values.  

Define the feature vector )}(),..(),({)( 10 hfhfhfhf D=
r

.

• Define a discriminant function

=

=
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)()( .  The 

decoding problem becomes searching for a w
r

that satisfies 

the following conditions on the test set:  
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2.2 The perceptron algorithm 

The perceptron algorithm views the N-best reranking task as a 

binary classification problem, attempting to find a vector w
r

which 

minimizes the classification errors on training data.  Instead of 

minimizing the training error directly, perceptron optimizes a 

minimum square error (MSE) loss function.  

We adopt the average perceptron algorithm presented in [9] 

in our experiments. This approach first updates w
r

by the standard 

iterative perceptron algorithm, as shown in Figure 1, then 

averages w
r

using the formula below: 
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where ji

dw , is the value for wd after processing j training utterances 

in the ith iteration, t is the total number of iterations.  Averaging 

the weights is to increase the model robustness [9]. 

1 Set w0 = 1 and wd = 0, d = 1…D

2 For j = 1…t (t is the total number of iterations) 

3     For each ni, i = 1…n
4   Choose the xi,j with the largest g(xi,j) value 

5   For each wd  (η = size of learning step) 

6           ))()(( ,, jidRiddd xfxfww −+= η
      Figure 1.  The perceptron algorithm 

2.3 The boosting algorithm 

Boosting has been applied to several speech recognition tasks [2, 4]. 

But previous work mainly focused on acoustic modeling.  The 

boosting algorithm described in this work focuses on modeling 

linguistic features, and attempts to minimize the ranking error on 

training data. This algorithm is based on [7]. It uses the following 

loss function to approximate the minimum ranking error.   
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where I[ ]=1  if  0, and 0 otherwise.  Without loss of 

generality, here we assume that 
Rix ,

always corresponds to
1,ix .   

The boosting algorithm also uses an iterative approach [7, 8] 

to estimate w
r

, as shown in Figure 2.  At each iteration, only one 

feature which contributes most to reducing the boosting loss 

function is chosen and its weight is updated.  Details about feature 

selection and weight updating are described in [7].  Our boosting 

approach differs from the AdaBoost algorithm [4] in that it focuses 

on the most distinguishing features from the very beginning.   

1  Set w0 = 1 and wd = 0, d = 1…D

2  Select a feature 
df which has largest estimated impact on 

reducing the value of boosting loss function. 

3  Update wd, and return to step 2. 

      Figure 2.  The boosting algorithm 

2.4 The ranking SVM algorithm 

SVM has been used for both classification and ranking problems.  

We select the ranking SVM algorithm [10] because of the 

unbalance nature of our data sets, implementing the method by 

using the SVM-light toolkits [11]. 

The ranking SVM algorithm uses below loss function to 

approximate the minimum training error: 
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This function is minimized subject to: 

)1(,1)()( ,1,,,1, ≠∀−≥⋅−⋅ jxxxfwxfw jiijijii

rr

r

r

r

r ξ              (4) 
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where C is a parameter trading off margin size against training 

error, and 
ji ,ξ denote slack variables.   

Inequality (4) shows that this optimization problem is a 

classification problem on )()( ,1, jii xfxf
rr

− , thus can be solved by 

decomposition algorithms for classification SVM. 

2.5 The minimum sample risk algorithm 

While all the above discriminative training methods use a loss 

function suitable for gradient search to simulate the minimum 

training error, MSR [12] attempts to minimize the training error 

directly.  MSR first reduce the whole feature set to a small subset 

of highly distinguishing features, to reduce computational 

complexity and to ensure the generalization property.  Then, in 

each iteration, the weights are updated one by one with a grid line 

search method. 

Figure 4 shows the basic process of the MSR algorithm.   A 

complete description of its implementation and the empirical 

justification are described in [12]. 

1 Set w0 = 1 and wd = 0, d = 1…D

2 Rank all features by its expected impact on reducing training 

error, and select the top N features 

3 For j = 1…t (t is the total number of iterations) 

4  For each n = 1…N

5      Update wn using linear search 

      Figure 3.  The MSR algorithm 

3. EXPERIMENTS 

3.1 Data sets 

We compare the 4 discriminative training algorithms presented 

above on the task of Chinese dictation.  We used two Mandarin 

dictation speech corpora in our experiments.  One is a large 

novel-domain speech corpus with a balanced set of speakers in 

terms of gender and age.  The other is a standard general-domain 

data test set (GTe-Set).  We further divided the novel-domain 

corpus into the domain-specific training set (DTr-Set) and the 

domain-specific test set ((DTe-Set) in the following way: In every 

five utterances, we used the first four utterances for training and the 

fifth for testing.  Table 1 shows the statistics of the three data sets. 
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Data Sets Task Utterance Count Domain 

DTr_Set Training 84,498 Novel 

DTe_Set Testing 21,123 Novel 

GTe_Set Testing 500 General 

Table 1.  Data sets 

The background (or baseline) LVCSR is a well-trained, 

general LVCSR.  For acoustic modeling, the cross-word triphone 

models are trained on a seprate Mandarin dictation speech corpus 

of about 700 hours, collected by considering the distribution of 

gender and age throughout the recording.  For language modeling, 

the trigram model is trained on about 28G (disk size) text corpora, 

balanced among different domains.  We attempt to improve the 

baseline LVCSR by reranking its N-best output using 

discriminative methods. 

3.2 Feature selection 

For each of the N-best hypothesis h  we select its recognizer score 

(an interpolation of the acoustic and language model scores) as the 

base feature f0. We define the remaining features, fi(h), i = 1…D,

as unigram/bigram features in the following way: 

1. Assign each word unigram/bigram a unique id i  i = 1…D

2. fi(h) is the count of the unigram/bigram with id i in h.   

3.3 Evaluation metrics 

We adopt two evaluation metrics for comparison purposes: (1) 

character error rate (CER), measured by the edit distance of 

character; (2) training time, which is estimated on a server with 

Intel Xeon CPU of 3.20 GHz. 

3.4 Algorithm comparison

In this subsection, we compare the performances of perceptron, 

boosting, ranking SVM and MSR on the two test sets.  Due to the 

training inefficiency of the ranking SVM, only the top 20 

hypotheses were adopted in training.  We used 100-best 

hypotheses in testing.  The results of the comparisons are shown 

in the table below. 

Algorithm Training Time DTe-Set 

CER % 

GTe-Set 

CER % 

Baseline -- 20.04 8.90 

Perceptron 27 minutes 17.83 8.79 

Boosting 16 minutes 19.35 8.60 

MSR 16 minutes 19.00 8.87 

Ranking SVM 54.8 hours 19.30 8.60 

Oracle -- 11.29 4.16 

Table 2.  Comparison of discriminative algorithms  

for reranking LVCSR N-best hypotheses 

In Table 2, “Baseline” refers to the CER of the recognizer 

outputs, i.e., the top-scoring hypotheses.  “Oracle” refers to the 

CER of the best hypotheses (the ones with lowest CERs) among 

the 100-best hypotheses.  Since the recognizer is a well-trained 

general domain LVCSR, the baseline performance on the general 

dictation test set (GTe_Set) achieved a very low error rate.  Since 

DTe_Set is a domain-specific test set with a high perplexity when 

measured by the language model of the recognizer, the recognition 

performance of baseline is worse, as expected.   

 In the above table, the results reported for perceptron are the 

performances after 40 iterations, while the results reported for 

boosting and MSR are the performances after 2000 iterations.  

Notice that changing iteration numbers may lead to different 

algorithm performance rankings.  Figure 4 and Figure 5 show the 

CER changes when the number of iterations increases from 1 to 40 

for perceptron, and from 1 to 2000 for boosting and MSR.  The 

rank of the iterative algorithms is consistent on DTe_Set, as shown 

in Figure 4. On the other hand, as shown in Figure 5, it is much 

harder to compare the algorithms on GTe_Set.  For examples, in 

Figure 5, CER curves of Perceptron and MSR are crossed, and it is 

difficult to make a conclusion about which method is superior.  

However, although the behaviors of the three iterative algorithms 

on GTe_Set are chaotic, the boosting algorithm seems to 

outperform the others, unlike the case of DTe_Set.  We will 

present a detailed discussion in the next session. 

4. DISCUSSION 

4.1 Domain adaptation vs. Generalization  

The background LVCSR is on general-domain and the 

discriminative training set is on novel-domain. Thus, the 

performance of the discriminative algorithms on the novel-domain 

test set DTe_Set can be viewed as the effects of the algorithms on 

domain adaptation, adapting the general LVCSR to novel-domain 

using novel-domain data.  Similarly, the algorithms’ performance 

on the general test set GTe_Set can be viewed as their effects on 

generalization, generalizing the error reduction on domain-specific 

training data to general test data.   

 The experiment results in Section 3 suggest the following 

observations for domain-adaptation and generalization. 

Observation 1: For domain adaptation, perceptron performs the 

best, shown in Figure 4 and Table 2.    

Observation 2: For generalization, perceptron performs the worst 

and boosting performs the best in most of the iterations, as shown 

in Figure 5 and Table 2.  While perceptron and MSR fluctuate 

dramatically in Figure 5, boosting shows a gentle declination in 

CER with increasing iterations. 

Figure 5. Comparison on GTe_Set
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Observation 3: Ranking SVM provides similar CER reduction as 

the boosting method for both domain adaptation and generalization, 

as shown in Table 2.   

 We attempt to explain the 1st observation for domain 

adaptation as follows:  During feature selecting and tuning, 

perceptron treats all training samples equally while the other three 

algorithms only concentrate on the most distinguishing samples [6, 

11, 12].  Thus, perceptron tunes a largest set of features, making 

the resulting model fit the domain best.   

 The second observation relating to generalization is mainly 

due to mismatches between training and test data.  In the 

domain-specific training data, there are two knowledge sources.  

One is domain-specific knowledge, referring to the rules which are 

applicable only in the specific domain.  The other is general 

knowledge, referring to the rules which are also applicable in 

general.  When testing on the general test set, the discriminating 

power of the features tuned to capture general knowledge will be 

affected by those features tuned to capture the (interfering) 

domain-specific knowledge.  So, the performance on general test 

set will be the competing result of the discriminating and 

interfering powers.  For perceptron, the great fluctuation and the 

poor performance of the resulting model show that perceptron 

tends to assign heavier weights to domain-specific information than 

other algorithms.  This is because of its undistinguishing way of 

selecting and tuning features.  For boosting, the rough decline 

with much less fluctuation shows that boosting emphasizes more 

on general knowledge during feature selection and tuning, which 

implies that the features for general knowledge are more 

distinguishing than the features for domain knowledge.  The 

reason is that in the novel domain, many linguistic phenomena only 

appear sparsely, while a general rule may occur everywhere.  

Thus, when considering the distinguishing power over the whole 

training data, the features tuned for general knowledge will be 

more favored by the boosting algorithm.  For MSR, the results 

show that MSR’s attitude towards the general knowledge and 

domain knowledge is more balanced than perceptron and boosting.   

 The third observation is because although boosting and SVM 

adopt different loss functions and training approaches, they both 

attempt to maximize the minimum margin of any training sample 

and concentrate on the samples with smallest margin during the 

training [6, 11].  The two algorithms are similar in this sense. 

The three observations can also be explained in terms of bias 

and variance.  All these experimental results indicate that for 

perceptron, the bias is low and the variance is high.  On the other 

hand, for boosting and SVM, the situation is reversed.  MSR is 

somewhere in the middle.  While low variance indicates a better 

generalization property, high variance may lead to better 

performance on domain adaptation.  Based on the algorithms’ 

characteristics, we can always select a suitable method for a given 

discriminative training /testing scenario. 

4.2 Time efficiency 

In Table 2, we can see that the ranking SVM algorithm needs much 

more training time than other algorithms.  While getting the final 

perceptron/boosting/MSR model takes less than 30 minutes, 

training a SVM model takes about 55 hours.  This is due to the 

heavy computational load of quadratic programming for SVM.  

However, since we do not use kernels for the ranking SVM 

algorithm in this work, the testing is almost equally efficient for all 

the four algorithms.   

5. CONCLUSIONS 

In this paper, we attempt to improve LVCSR performance by 

reranking its N-best hypotheses, using various discriminative 

approaches.  Given a novel-domain training set, we found that 

discriminative reranking not only improves the recognition 

performance on the novel-domain test set, but also on the general 

test set.  The best CER reduction on the general test set is from 

8.9% to 8.6%; while the best CER reduction on the novel-domain 

test set is from 20.0% to 17.8%.  This observation is especially 

meaningful when a large general training corpus is unavailable.  

We further compared the four discriminative algorithms in terms of 

domain adaptation, generalization and time efficiency.  The 

results indicate that perceptron performs the best for domain 

adaptation while boosting and ranking SVM obtain the greatest 

error reduction for domain generalization.  However, ranking 

SVM is inefficient for training, and this will be an obstacle. 
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