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ABSTRACT 

Tone-enhanced, generalized character posterior probability 

(GCPP), a generalized form of posterior probability at subword 

(Chinese character) level, is proposed as a rescoring metric for 

improving Cantonese LVCSR performance. The search network is 

constructed first by converting the original word graph to a 

restructured word graph, then a character graph and finally, a 

character confusion network (CCN). Based upon GCPP enhanced 

with tone information, the character error rate (CER) is minimized 

or the GCPP product is maximized over a chosen graph. 

Experimental results show that the tone enhanced GCPP can 

improve character error rate by up to 15.1%, relatively. 

1. INTRODUCTION 

Most HMM based speech recognizers search for the word string 

(sentence) hypothesis that yields the maximum a posterior (MAP) 

probability. Under the MAP criterion misrecognized sentences are 

minimized in the expected value sense. However, word error rate 

(WER), rather than sentence error rate, is more universally 

accepted in the speech recognition community as the sole objective 

performance measure of an LVCSR system. Many studies have 

been done on how to train a recognizer or perform search in 

recognition to optimize such measure. For example, minimizing 

the expected word error rate was proposed as the search criterion 

for speech recognition [1-4]. Estimation of word posterior 

probability and determination of the sentence with minimum 

expected word error were investigated for N-best output [1]. They 

were also applied to a word graph [2], where multiple string 

alignment instead of pairwise string alignment was adopted. In [4], 

the minimum Bayes-risk (MBR) approach, a more general cost 

function based on word error measurement, is implemented to 

rescore N-best list and to A* search over the word lattice. In 

addition, confidence measures at the word level were used for 

rescoring [5-7]. 

Cantonese, a popular Southern Chinese dialect, is a syllabically 

paced, tonal language of which tones are lexical. The basic written 

unit of Cantonese is the Chinese character. Each character is 

pronounced as a tonalized monosyllable, which has a relatively 

simple (C)-V-(C) structure and relatively stable duration than other 

speech units in Chinese. Character, a subword unit in Chinese, also 

plays an important role in both morphology and phonology of 

Chinese languages. Most of the morphemes consist of one single 

character. In written Chinese, except for the occasional 

punctuation marks, there is no delimiter (like blank space) between 

two adjacent characters. As a result, the definition of a word in 

Chinese is somewhat vague and the performance of Chinese 

LVCSR is usually measured by the corresponding character error 

rate (CER), rather than the word error rate. In this paper, we 

propose to use tone-enhanced, generalized character posterior 

probability (GCPP) as a rescoring metric for Cantonese LVCSR. 

GCPP is computed in a restructured word graph by incorporating 

the tone information. Two improved search approaches based on 

GCPP, either minimizing character error rate (CER) or maximizing 

GCPP product, will be presented. 

2. GENERALIZED CHARACTER POSTERIOR 

PROBABILITY (GCPP) 

Posterior probability assesses quantitatively the correctness of 

recognition results. It can be computed at sentence, word or 

subword, e.g., syllable or character, level. There have been 

numerous studies on its estimation and applications [8][9]. 

Generalized posterior probability [10] tries to address the various 

modeling discrepancies and numerical issues in computing the 

posterior probability. It is designed to incorporate automatically 

trained optimal weights to equalize the different dynamic range of 

acoustic and language models, segmentation ambiguities, etc. It 

attempts to configure the most appropriate posterior probabilities 

for different recognition or verification tasks. Its effectiveness has 

been demonstrated in verification of recognition outputs under 

both clean and noisy conditions [11][12]. 

2.1 GCPP estimation

The posterior probability of a specific character can be estimated 

by summing up the posterior probabilities of all string hypotheses 

that contain the same character with identical starting and ending 

time. The output of a Chinese recognizer is a string of words, 

1 1 2, ,...,
M

Mw w w w= . It can be further decomposed into a sequence 

of characters, 
1 1 2, ,...,L

Lc c c c= . GCPP computation for a specific 

character c  can be defined as, 
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is the prior probability of character 
lc , or the language model (LM) 

likelihood, given all its history 1

1

l
c

− ; and α  and β are the 

exponential AM and LM weights that are jointly optimized with a 

held-out set of data. The character acoustic likelihood and 

boundary information can be recorded during the first-pass Viterbi 

search, but the character prior probability is not available when 

word-based language model is used in our Cantonese LVCSR, 

which will be introduced in Section 4.1. Character is a subword 

unit, the word 
mw  comprises ( 1)Z ≥  such characters 

,1 ,2 ,, ,...,m m m m Zw c c c= . To compute GCPP, Eq. (1) is revised as 
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GCPP [18] can be estimated from generalized word posterior 

probability (GWPP). A word and its constituent characters share 

the same string hypothesis. However, if the GCPP is simply made 

equal to the GWPP of its carrier word, it would be under-estimated. 

This is because the same character may appear in different words. 

If the word posterior probabilities are known, the 

GCPP
1

([ ; , ] | )Tp c s t x could be estimated by summing up the 

posterior probabilities of all words containing this character over 

the same time interval, i.e. 
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where 
1([ ; , ] | )Tp w s t x  is the GWPP estimated from a restructured 

word graph by the forward-backward algorithm. With the character 

boundary information, the word graph can be converted into a 

character graph. For each character arc, the GCPP is initially 

assigned the GWPP value of the carrier word. If two arcs of 

character graph with the same character identity over the same time 

interval are merged into one arc, the GCPP of the resultant 

character arc should be the summation of those two arc scores. An 

example is illustrated in Fig. 1. 

2.2 Restructured word graph 

Different algorithms can be used to generate word graphs and the 

structure of a word graph is important to GCPP estimation. Our 

word graph is generated based upon word dependent lexical tree 

search with word pair constraint [13]. In the first-pass Viterbi 

search, word boundaries are optimized with given predecessor 

words and word acoustic scores are recorded at word-ending states. 

Word arcs with identical timing information are merged into a 

single node. The illustration of a word graph is shown in Fig. 2 (a), 

where arcs are labeled with their word identities,
j

w , and the 

preceding words, 
iv . Here the word score and timing information 

are not shown for clarity. Each arc is marked with the current and 

preceding word information, denoted as |j iw v . There are totally 

five legal paths from the start node to the end node as shown in Fig. 

2 (a). 

When estimating the generalized posterior probabilities, we 

restructure the word graph by ignoring all preceding word 

information, as shown in Fig. 2 (b). That is, a word pair is 

considered legal if two words are connected at a node and all 

connected paths in the resultant word graph are also legal. The 

word graph constructed in this way, due to its over-generation 

property, can recover promising hypotheses which might have 

been prematurely pruned in the first-pass. For example, the total 

number of legal paths in Fig. 2 (b) is increased from five to seven. 

A similar strategy was employed in [9]. 

Fig. 1 An example of transforming word graph into character 

confusion network, each arc is associated with character and its 

logarithm of generalized posterior probability. The deletion in 

confusion set is denoted by “--”. 

         (a)                                                 (b) 

Fig. 2 The illustration of (a) a word graph and (b) restructured 

word graph 

2.3 Enhancing GCPP by tone model 

In Chinese, each character is pronounced as a tonalized 

monosyllable. The features derived from syllable-wide F0 contours 

in Chinese were shown to be effective for tone modeling and 

recognition. Our Cantonese tone model which characterizes not 

only the tone contour of a single syllable but those of the adjacent 

ones significantly outperforms previously reported methods [14]. 

We propose to use this tone model (TM) to calculate GCPP 

together with AM and LM. Eq. (1) is rewritten as 
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where x  and y  denote the spectral features (e.g., MFCC) and 

pitch-related features such as F0, respectively. 
l

q  is the tonal 

syllabic transcription of character 
l

c . It is composed by the 

syllabic transcription
l

qs  and the tonal transcription
lqt . γ is the 

weight of TM and should be adjusted to optimize the CER 

together with the weights of AM and LM. 

3. GCPP-BASED RESCORING 

GCPP provides a quantitative estimate for the correctness of 

recognized characters. It is more appropriate as a performance 

metric since the performance of Chinese LVCSR is usually 

measured by CER. Here, two improved search criteria based on 

GCPP are investigated.  

3.1 Minimum character error rate

Minimum character error rate (MCER) search is similar to 

minimum word error rate search [2] but at subword level. In 

Section 2, we have converted the word graph into a character graph 

and computed GCPP for each character arc of the graph. Here, we 

construct character confusion network (CCN) based on character 

graph in order to implement the MCER search. 

An arc clustering procedure [2], which is used to construct a 

word graph into a linear one, is modified to transform graph at 

character level. The clustering is performed in three stages:  

(1) pruning the arcs with low GCPP to avoid confusable clustering; 

(2) merging same character arcs with overlapping time intervals 

and assigning the summation of their GCPPs to the resultant arc;  

(3) grouping different character arcs into confusion sets according 

their time overlap, phonetic similarity and GCPP. The grouped 

character arcs are called the character confusion sets (CCS), which 

contain competing alternative character hypotheses with 

corresponding GCPPs.  A sequence of CCSs form a linear graph 

called character confusion network (CCN).  An example of 

converting word graph into CCN is shown as in Fig. 1. It consists 

of two transformations: (1) from the word graph to character graph 

and (2) from character graph to CCN. 

In a CCN, each arc is labeled with a GCPP. MCER search can 

be expressed as 

1

1 1 1
,...,

* * arg min ( | )
L j l

l l l j

M L T

j
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c cs c c

w c p c x
∈

∈ ≠

= = ∑ ∑              (5) 

where 
l

cs  denotes the l-th CCS, 
l

c  and 
j

c  are arbitrary character 

arcs in that CCS, and the word string 
1

*
M

w is equivalent to the 

character string 
1

*Lc .  Eq. (5) can be achieved by selecting the 

character with the highest GCPP in each CCS. The sentence 

hypothesis with the lowest character error rate can be found by 

concatenating these characters. 

3.2 Maximum GCPP product

Assuming no context dependencies, we can approximate sentence 

posterior by multiplying the posterior probabilities of all 

constituent characters. For ASR, the context dependencies of both 

acoustic observations and word in specific language should be 

considered. However, it is usually assumed that all observation 

frames are dependent only on the state that generates them, not on 

neighboring observation frames in conventional HMM based 

LVCSR. Moreover, a trigram language model used by forward-

backward algorithm in computing character posteriors has taken 

the language context into account implicitly. Therefore, speech 

recognition can be viewed as finding a string which maximizes the 

product of GCPPs of individual characters, i.e. 
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The graph-based DP search is applied to find 1-best path through 

the character graph. 

4. EXPERIMENTS AND RESULTS 

4.1 Speech database and baseline system 

The speech corpus used in the experiments is CUSentTM, which 

was collected at the DSP & Speech Technology Laboratory of the 

Chinese University of Hong Kong (CUHK) [15]. It is a continuous 

Cantonese speech corpus. The contents are given as in Table 1. 

The baseline LVCSR system, named CURec, was also 

developed by the same research group at CUHK [16]. It uses 

context-dependent syllable Initial/Final models. The acoustic 

feature vector consists of 12 MFCC, log energy, and their first and 

second-order time derivatives. The Initial model is an HMM with 3 

emitting states, while the Final model has either 3 or 5 emitting 

states, depending on its phonetic complexity. The output 

probability density function (pdf) of each emitting state was trained 

as a mixture of 16 Gaussian components. CURec uses a language 

model with 6,400 words. It was trained on a text corpus of 98 

million Chinese characters from five Hong Kong newspapers. 

A two-pass search algorithm is implemented in CURec. A 

word graph is generated in the first-pass search which is done time-

synchronously with a word-conditioned lexical tree and a bigram 

LM. The second pass performs rescoring on the word graph with a 

trigram LM. 

Table 1. Speech database used in this study 

Num of speakersNum of 

Sentences male female

Training 20,378 34 34 

Development 399 2 2 

Testing 799 4 4 

4.2 Performance of restructured word graph 

Rescoring is performed in word graph (WG) and restructured word 

graph (RWG) with a trigram LM and re-optimized LM weight. The 

CER of LVCSR obtained from RWG outperforms that of WG by 

1.56-2.03% absolute, as shown in Table 2. This confirms our 

conjecture that restructured word graph can recover some good 

paths pruned prematurely. 

 Table 3 gives the details of the RWGs used in our experiments. 

They are generated by the first-pass search with different beam 

widths. The recognition performance in terms of CER is also given. 

It is obtained by rescoring the RWG with a trigram LM. The graph 

error rate (GER) is computed by aligning the correct character 

sequence with the generated word graph to find the path with the 

least number of character errors. GER indicates the lower bound of 

the CER that is attainable by word graph rescoring. The word 

graph density (WGD) is the total number of word arcs divided by 
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the number of characters. In Table 3, RWG with the WGD of 21 

gives almost the same CER and GER as the one with the WGD of 

134. This suggests that an extremely wide beam-width may not be 

necessary for post-processing. 

4.3 Results of GCPP-based rescoring 

The CERs of recognition by using minimum CER and maximum 

GCPP product are shown at the bottom half of Table 2.  Compared 

with the results of MAP, both approaches based on GCPP can 

reduce the absolute CERs by 0.32-0.74% at different beam widths. 

The performance of GCPP product is slightly worse than MCER. 

Table 2 also shows the performance of tone-enhanced GCPP based 

rescoring. GCPP enhanced with tone information results in 

absolute CER reductions of 2.29-2.80%, or 13.8-15.1% relative 

reduction. The greatest relative improvement of 15.1% is attained 

by MCER search for the wide beam generated graphs. 

Table 2. Recognition performance in character error rate (CER) 

 CER of recognition (%) 

Beam widths Narrow Medium Wide 

MAP 

 (WG, trigram) 
20.46 18.21 17.73

MAP 

(RWG, trigram) 
18.58 16.18 16.17

MCER 17.84 15.82 15.82

GCPP 
GCPP 

product
18.03 15.86 15.82

MCER 15.78 13.86 13.73Tone-

enhanced 

GCPP 
GCPP 

product
16.01 13.89 13.85

Table 3. RWGs generated with using different beam widths 

Beam width CER (%) GER(%) WGD

Narrow 18.58 7.45 11 

Medium 16.18 5.27 16 

Wide 16.17 4.69 21 

Widest 15.90 4.58 134 

4.4 Optimal weights 

Optimal AM, LM and TM weights in the above experiments are 

found from the development set. We adopt an efficient Downhill 

Simplex method [17] to perform the optimal weight search. The 

weights for graphs generated from different beam widths are 

trained independently. For example, the optimal weights for AM, 

LM and TM obtained in the case of medium beam width are 

0.03α = , 0.9β = and 0.13γ = , respectively, and then are rather 

stable for different beam widths. 

5. CONCLUSIONS 

GCPP is proposed to be used as a search metric for improving 

Cantonese LVCSR performance. For each hypothesized character, 

Tone-enhanced GCPP is computed by incorporating the tone 

model score along with the corresponding acoustic and language 

model scores in a restructured word graph, which not only contains 

more string hypotheses than a typical N-best list but also recovers 

good but prematurely pruned string hypotheses. It is shown that in 

our two GCPP-based rescoring can reduce CER of recognition by 

13.8-15.1% relatively at different beam width generated graphs.   
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