
MODELING POLYPHONE CONTEXT WITH WEIGHTED FINITE-STATE TRANSDUCERS

Emilian Stoimenov and John McDonough

Institut für Theoretische Informatik
Universität Karlsruhe
Am Fasanengarten 5

D-76131 Karlsruhe, Germany
{emilian,jmcd}@ira.uka.de

ABSTRACT
As coarticulation effects are prevalent in all speech, a phone

must be modeled in its context to achieve optimal performance in
large vocabulary continuous speech recognition systems. Schuster
and Hori [7] proposed a technique for modeling polyphone context
with weighted finite-state transducers whereby all valid three-state
sequences of Gaussian mixture models are enumerated, and there-
after the possible connections between these three-state sequences
are determined. Hence, the explicit modeling of all possible poly-
phones is avoided. Rather, Schuster and Hori derive a transducer
HC that translates from sequences of Gaussian mixture models di-
rectly to phone sequences. The resulting network HC ◦ L ◦ G is
much smaller than the conventional network H ◦ C ◦ L ◦ G pro-
posed by Mohri et al [6]. While Schuster and Hori’s approach to
modeling polyphone context is quite interesting, it is incorrect for
contexts larger than triphones. In this work, we correct the errors of
Schuster and Hori. Thereafter we discuss how the intermediate size
of the network HC can be held in check. We also present the results
of a set of experiments comparing network size and speech recog-
nition performance for networks obtained with Schuster and Hori’s
technique and with the correct technique.

1. INTRODUCTION

State-of-the-art large vocabulary continuous speech recognition sys-
tems use subword units consisting of phones to model the words
of a language. As coarticulation effects are prevalent in all speech,
a phone must be modeled in its context to achieve optimal perfor-
mance. The relevant contexts are most often chosen with a decision
tree based on a measure of goodness such as the likelihood or en-
tropy of a training set.

As originally proposed by Mohri et al [6, 4], a weighted finite-
state transducer (WFST) that translates phone sequences into word
sequences can be obtained by forming the composition L◦G, where
L is a lexicon which translates the phonetic transcription of a word
to the word itself, and G is a grammar or language model which as-
signs to valid sequences of words a weight consisting of the negative
log probability of this sequence. In the original formulation of Mohri
and Riley [5], phonetic context is modeled by the series of composi-
tions H ◦ C ◦ L ◦ G, where H is a transducer converting sequences
of Gaussian mixture models to sequences of polyphones, and C is
a transducer that converts these polyphone sequences to correspond-
ing sequences of phones. While this approach has proven effective,
explicitly modeling the expansion of phones to polyphones with C
introduces a great deal of redundancy, thereby causing the size of the
final network H ◦ C ◦ L ◦ G to grow very large. Although this size
and redundancy can be reduced through subsequent determinization
and minimization [3], the mere fact that H ◦C ◦L◦G must be com-
pletely expanded before these optimizing operations can be applied

This work was supported by the European Union under the integrated
project CHIL, Computers in the Human Interaction Loop, contract number
506909.

effectively limited this technique to the representation of triphone
context, inasmuch as H ◦ C ◦ L ◦ G could not be stored in random
access memory for larger contexts.

Several methods for modeling polyphone context that seek to
circumvent the necessity of explicitly modeling the polyphone ex-
pansion C have recently appeared in the literature. Chen [1] ex-
tended the ideas of Sproat and Riley [8] in using the structure of
the decision tree to rewrite the states in a context independent phone
model first to the intermediate nodes in the decision tree, then fi-
nally to the leaf nodes. Chen’s technique first applies the questions
concerning the left context of a phone, then reverses the graph and
applies the questions concerning the right context. All questions are
formulated as WFSTs, and the necessary rewrites are accomplished
through a series of compositions, each of which applies exactly one
question. To inhibit the uncontrolled growth of network, Chen de-
terminizes the network after the application of every question.

Schuster and Hori [7] proposed a technique whereby all valid
three-state sequences of Gaussian mixture models are enumerated,
and thereafter the possible connections between these three-state se-
quences are determined; hence, the explicit expansion of C is avoided.
Rather, Schuster and Hori, like Chen, derive a transducer HC that
translates from sequences of Gaussian mixture models directly to
phone sequences. The resulting network HC◦L◦G is much smaller
than the conventional H ◦ C ◦ L ◦ G as the number of valid three-
state sequences associated with a given decision tree is far smaller
than the number of possible polyphones.

While Schuster and Hori’s approach to modeling polyphone con-
text is quite interesting and enjoys the advantage of being conceptu-
ally straightforward, as we show in this work, it is incorrect for con-
texts larger than triphones. Indeed, some indication of this can be
found in [7], inasmuch as Schuster and Hori claim that—after deter-
minmization and minimization—their technique results in a smaller
network than obtained with the conventional expansion H◦C◦L◦G.
This flatly contradicts the claims of Mohri [3], who maintains that
determinizing and minimizing H ◦ C ◦ L ◦ G results in the network
with the fewest states and arcs among all deterministic transducers
that implement the same function.

In this work, we address the problem of modeling polyphone
context with WFSTs. We begin by correcting the errors in the ap-
proach of Schuster and Hori and thereafter discuss how the interme-
diate size of the network HC can be held in check. We also discuss
how this approach can be modified to accommodate decision trees
that allow compound questions.

2. POLYPHONE MODELING

In this section, we explain how Schuster and Hori’s technique [7]
can be corrected so as to produce the correct mapping between se-
quences of Gaussian mixture models (GMMs) and phone sequences.
We also consider such details as how this technique can be modified
to accommodate decision trees allowing compound questions. Our
ASR system distinguishes between regular phones and word bound-

I 121142440469X/06/$20.00 ©2006 IEEE ICASSP 2006

polyphone position
phone 0 1 2 3 4
AH 0 0 1 1 0

{AH:WB} 0 0 1 0 0
B 0 0 0 1 0

{B:WB} 0 1 0 0 1
...

...
Z 1 0 0 1 0

{Z:WB} 1 0 0 0 0

Fig. 1. Typical bit matrix corresponding to center phone “AH.”

ary phones. The latter are distinguished from the former with the
WB marker; e.g., {AH:WB} is an AH at a word boundary.

Following Schuster and Hori [7], we begin by calculating a bit
matrix B for each leaf node in a decision tree that specifies which
phones are allowed in which positions. Each row of B corresponds
to a phone and each column corresponds to a position in the poly-
phone context. As shown in Figure 2, position (m, n) of B is one
iff the m-th phone is allowed in the n-th position. The bit matri-
ces are easily calculated by walking down the decision tree(s) from
the root node to the leaves, and unsetting the bits corresponding to
disallowed phones at each juncture.

Let A and B represent two possible questions in a decision tree,
and consider a node in a decision tree in which the compound ques-
tion A AND B is posed. Interpreting the YES clause in the tree is
straightforward; it is only necessary to reset all bits for which either
A or B is false. The NO clause for this question, on the other hand,
is not so straightforward, as !(A and B) = !A or !B. This implies
that for the NO clause we must reset the bits where either A or B
is true, which means that separate bit matrices must be retained to
represent the cases !A and !B. Hence, to handle decision trees with
compound contexts, it is necessary to extend the notion of a bit ma-
trix proposed in Schuster and Hori’s original work to include a list
L of bit matrices.

We say two bit matrices Bi and Bj are equivalent if all bits in all
locations have equal values, which we denote as Bi == Bj . We say
B is valid if at least one bit is set in each column. Let Ln = {Bi}
be a bit matrix list. We say two bit matrix lists Ln and Lm are
equivalent if ‖Ln‖ = ‖Lm‖ and each Bi ∈ Ln is equivalent to
exactly one Bj ∈ Lm. We can assume without loss of generality
that Bi �= Bj for any Bi,Bj ∈ Lm.

2.1. Metastate Enumeration

Let p denote the center phone for any given polyphone context. Let
si denote the leaf node in a decision tree associated with the i-th
state in a hidden Markov model (HMM). Assuming for simplicity
that all HMMs have three states, define a metastate s as a quintuple
s = (p, s1, s2, s3,L) where L is the list of valid bit matrices cor-
responding to the state sequence s1, s2, s3. Let L′ = L � be the
list of bit matrices obtained by right shifting each B ∈ L and let
L′′ = Ln & Lm denote the list of valid bit matrices obtained by
performing the bitwise & operation on each Bi ∈ Ln with every
Bj ∈ Lm. As in Schuster and Hori [7], we can enumerate a set
S of valid metastates as follows. Begin with a bit matrix list Ls1

corresponding to the leaf node associated with the first state of a
three-state sequence for a polyphone with center phone p. Similarly,
let Ls2 and Ls3 be the bit matrices for the second and third states for
such a three-state sequence for a polyphone with center phone p. If

L = Ls1 & Ls2 & Ls3

is non-empty, then s1, s2, s3 is a valid three-state sequence and the
metastate (p, s1, s2, s3,L) can be added to S. As discussed in [7],
all such valid metastates can be enumerated by first enumerating the

valid two-state sequences, then building three-state sequences. We
say that two metastates are equivalent if they have the same phone
p, the same three-state sequence s1, s2, s3 and equivalent bit matrix
lists L.

2.2. Metastate Connection

Let S = {si} denote the set of valid metastates obtained from the
state sequence enumeration algorithm of Section 2.1 and let T be a
second, initially empty, set of metastates. Let Q be a queue using any
discipline and let SIL denote the initial silence metastate. The start
and end nodes of HC are denoted as INITIAL and FINAL respec-
tively. Additionally, let E denote the set of edges in HC. Denoting
an input dictionary of names of GMMs and an output dictionary of
phones as D and P, respectively, we can express each edge e ∈ E
as a four-tuple,

e = (sfrom, sto, d, p)

where sfrom is the previous state, sto is the following state, d ∈ D is
the input symbol and p ∈ P is either an output symbol or epsilon.

Listing 1 Metastate connection.
00 def connectMetastates(SIL, S):
01 push SIL on Q
02 add SIL to T
03 connect INITIAL to SIL
04 while ‖Q‖ > 0:
05 pop q from Q
06 if q.p == SIL:
07 connect q to FINAL
08 foreach s ∈ S:
09 L ← (q.L �) & s.L
10 if ‖L‖ > 0:
11 t ← (s.p, s.s1, s.s2, s.s3, L)
12 if t �∈ T:
13 add t to T
14 push t on Q
15 e ← (q.s3, t.s1, t.s1.g, t.p)
16 add e to E
17 return (T, E)

Consider now the algorithm for metastate connection in List-
ing 1. In this listing, Q is a queue of metastates whose connections
to other metastates have yet to be determined. In Line 05, the next
metastate q is popped from Q and connected in Lines 06-07 to FI-
NAL if q corresponds to SIL. In the loop that begins at Line 08, each
s ∈ S is tested to find if a new metastate t can be derived from s,
as in Line 11, to which q should be connected. This test consists of
forming the new list L of valid bit matrices in Line 09, and checking
if L is non-empty in Line 10. Note that the right shift >> in Line 09
is to be understood as shifting in a column of ones. If ‖L‖ > 0,
then the name of the new metastate t is formed in Line 11, and T
is searched to determine if this t already exists. If t does not exist,
then it is added to T and placed on the queue Q in Lines 12-14.
This ensures that the connections for each t ∈ T are created exactly
once. The new edge e from the last state of q to the first state of
t is created in Lines 15-16, where t.s1.g is the name of the GMM
associated with the latter.

When a metastate t is defined as in Line 11 of Listing 1, we will
say the t is derived from s. We will denote this relation with the
functional notation s ← from(t,S)

2.3. Comparison with Schuster and Hori’s Algorithm

The critical difference between the algorithm presented in Listing 1
and that of Schuster and Hori [7] lies in the definition of the new
metastate t in Line 11. Whereas the correct algorithm assigns the

I 122

N b(111)

N e(12)EH e(96) N b(111) N m(172) N m(172)

N e(12)

N b(118)

N b(118)

N m(172)

eps

N b(118) N e(12)EH e(96)

N e(12)eps N b(118) N m(172)

N m(172)

Fig. 2. Pentaphone example showing difference in network pro-
duced with Schuster and Hori’s algorithm and the correct algorithm.

newly-created list L of bit matrices to t, Schuster and Hori’s al-
gorithm assigns the previously-existing s.L. Hence, in Schuster and
Hori’s algorithm the final set of metastates T is identical with the ini-
tial set S obtained from the metastate enumeration step; i.e., Schus-
ter and Hori’s algorithm discards the phonetic context information
from q.L which is contained in L but not in s.L. From Line 11,
it is clear that the set of bits in L that are one is a subset of the
bits in s.L that are one. As a one in L holds out the possibility of
forming a connection when t is subsequently expanded, a moment’s
thought will reveal that Schuster and Hori’s algorithm will produce
metastates that have connections which should not exist. The correct
algorithm, on the other hand, will produce more metastates, as many
metastates will share the same phone and three-state sequence, but
be differentiated by the list of bit matrices. These metastates, how-
ever, will have the correct set of connections and no others.

As explained in the introduction, Schuster and Hori’s algorithm
is actually correct for triphone contexts. This is readily seen when
considering that, for triphones, L and s.L as defined in Line 09 of
Listing 1 are equivalent in all but the 0th position, which will be
shifted out when these matrices are compared to others for the pur-
pose of forming metastate connections.1

The difference between Schuster and Hori’s algorithm and the
correct algorithm can be readily seen with a small example. In Fig-
ure 2 is a portion of the network obtained by composing the word
“PEN” with the HC ◦L ◦G obtained with both Schuster and Hori’s
algorithm, as well as the correct algorithm. In the figure, the transi-
tions are labeled with the names of GMMs; e.g., “EH-e(96)” is the
96th cluster for the end state of phone EH. As is apparent from the
figure, the network generated with Schuster and Hori’s algorithm al-
lows the transition “N-b(111),” which is not allowed by the network
generated with the correct algorithm, nor by the conventional net-
work H ◦ C ◦ L ◦ G in which all polyphone contexts are explicitly
expanded.

2.4. Bit Masks

The algorithm presented in Section 2.2 is correct but impractical,
inasmuch as for any reasonably sized decision tree, the number of
metastates will quickly become intractably large and deplete all avail-
able memory; the algorithm does not finish. Here we consider two
modifications to the algorithm: the first is a pure speedup, the second
limits the growth of metastates.

Consider a metastate s ∈ S where S is once more the set of
metastates obtained from the metastate enumeration algorithm. The

1For our system, Schuster and Hori’s algorithm produces incorrect results
even for triphones due to the presence of the word boundary markers. This
can cause AH and {AH:WB}, for example, to both be valid center phones
for a given metastate. This in turn can lead to a subsequent difference when
the full phonetic context is considered.

set
N(s,S) = {n ∈ S : ‖(s.L >>) & n.L‖ > 0}

is readily seen to be the list of possible following metastates for any
t ∈ T derived from sF ← from(t,S). Hence, searching only
over N(sF ,S) in Line 08 of Listing 1 instead of over all S results
in a significant speedup. Moreover, in so doing, we run no risk of
omitting any possible connections from t: If t is derived from s
as in Line 11 of Listing 1, then the bit matrices appearing in t.L
can only have ones in a subset of the positions where s.L has ones.
The implies that t will connect only to a subset of those metastates
derived from the elements of N(s,S).

Listing 2 Bit mask function.
00 def bitMask(s,S):
01 set all bits in M to zero
02 foreach n in N(s,S):
03 foreach M′ in n.L:
04 M ← (M | M′)
05 return (M <<)

Consider the definition of the function bitMask in Listing 2.
The left shift operation in Line 05 of this listing is to be understood
as shifting in a column of zeros. It is not difficult to see that Line 09
of Listing 1 can be replaced with

L ← (q.L �) & s.L & M

where M ← bitMask(s, S): Applying M to the prior definition
of L unsets those bits that will be unset in any event as soon L is right
shifted and multiplied with any n ∈ N(s,S). Leaving these bits set
only causes an unneeded increase in ‖T‖, inasmuch as metastates
in T which are essentially equivalent will be treated as different;
these metastates will be combined when HC is determinized and
minimized.

With the two changes described here, the metastate connection
algorithm can now be reformulated as in Listing 3. The most im-

Listing 3 Efficient metastate connection.
00 def connectMetastates(SIL, S):
01 push SIL on Q
02 add SIL to T
03 connect INITIAL to SIL
04 while ‖Q‖ > 0:
05 pop q from Q
06 if q.p == SIL:
07 connect q to FINAL
08 sF ← from(q,S)
09 foreach s ∈ N(sF ,S):
10 M ← bitMask(s,S)
11 L ← (q.L �) & s.L & M
12 if ‖L‖ > 0 :
13 t ← (s.p, s.s1, s.s2, s.s3, L)
14 if t �∈ T:
15 add t to T
16 push t on Q
17 e ← (q.s3, t.s1, t.s1.g, t.p)
18 add e to E
19 return (T, E)

portant differences between Listings 1 and 3 lie in the loop over
N(sF , S) in Lines 08-09 of the latter, which provides a speedup,
and the application of the bit mask in Lines 10-11, which inhibits
the growth of ‖T‖. For efficiency, N(s,S) and bitMask(s,S) are
precalculated for all s ∈ S and stored, so that Lines 09 and 10 only
involve table lookups.

I 123

S&H Correct
Network States Arcs States Arcs

HC 112,878 4,378,729 1,979,871 85,610,928
det(HC) 53,920 747,748 812,533 12,740,381

min(det(HC)) 26,902 257,430 91,784 894,163
R 138,628 320,891 167,632 372,501

det(R) 1,836,077 3,970,263 2,122,747 4,317,925
min(det(R)) 99,183 236,149 102,420 234,769

Table 1. Pentaphone network sizes for Schuster and Hori’s (S&H)
algorithm and the correct algorithm. Here, R = min(det(HC)) ◦
det(L ◦ G ◦ W), where W is a word minimized lattice with 14,239
states and 27,993 arcs.

Given that state clustering sometimes ignores state boundary in-
formation, which means that a regular phone and its state bound-
ary version in a given context will have the same three-state se-
quence and same bit matrix list, we made a final modification of the
metastate connection algorithm to efficiently handle word boundary
phones: If a metastate t has a center phone with a word boundary
marker, and t does not exist in T, we search for the same metastate
but for a non-boundary center phone. If this is found, then both ver-
sions of the metastate can share the same three-state and bit matrix
list, and these structures need not be allocated. This modification re-
duces both the size of HC ◦L◦G as well the computational expense
of the subsequent determinization.

3. EXPERIMENTS

Table 1 shows the sizes of a pentaphone network HC after each
stage in the construction using both Schuster and Hori’s (S&H) al-
gorithm as well as the correct algorithm. Observe that the network
HC produced by the correct algorithm initially has more than an or-
der of magnitude more states and arcs than that produced by Schus-
ter and Hori’s algorithm. This difference is greatly reduced, how-
ever, by subsequent determinization and minimization, so that the
final minimized networks differ in size by a factor of approximately
3.4. For rescoring purposes, we next composed a word lattice W
with G and L, then with HC. Once more, the initial difference in
R = min(det(HC)) ◦ det(L ◦ G ◦ W) was reduced through sub-
sequent minimization and determinization. In the end, the correct
recognition network had only marginally more states than the S&H
network, and actually had fewer arcs. These results are in agree-
ment with our contention that the HC transducer produced with the
S&H algorithm has too few metastates, and these metastates allow a
superset of the correct connections.

The experiments reported below were conducted with the Mille-
nium automatic speech recognition system, which is developed and
maintained by the authors and students at the University of Karlsruhe
in Karlsruhe, Germany. The recognition and training modules of
Millenium are based entirely on a FST library. For the experiments
reported here, a fully-continuous ASR with 3,500 codebooks was
trained. The features for ASR were obtained by extracting vectors
13 cepstral coefficients, then concatenating 15 consecutive frames
together. Linear discriminant analysis was used to reduce the di-
mensionality of the final feature to 42. Semi-tied covariances and
cepstral mean normalization were also used.

The test set used to evaluate the algorithms proposed here con-
tains approximately 2.5 hours of audio and video data recorded dur-
ing five seminars by students and faculty at the University of Karl-
sruhe (UKA) in Karlsruhe, Germany. The seminar speakers spoke
in English, but often had pronounced German or other accents. The
subject matter was technical in nature, typically about topics related
to automatic speech recognition. This data was collected as part
of the European Union integrated project, CHIL, Computers in the
Human Interaction Loop. The total size of the test set was approxi-

% Word Error Rate
S&H Correct

Pentaphone 37.7 37.6

Table 2. Word error rates from a set of lattice rescoring experiments.

mately 17,000 words.
Table 2 shows word error rates from a set of lattice rescoring

experiments conducted on the CHIL data. For these experiments,
we built a combined pentaphone HC using both the correct method,
as well as the S&H technique. The unadapted first pass system used
to generate the lattices achieved a word error rate (WER) of 39.9%.
For rescoring, a system adapted with maximum likelihood linear re-
gression (MLLR) [2] was used. The system had been adaptively
trained with MLLR parameters.

As is apparent from Table 2, the final difference in WER achieved
by the correct and S&H systems is vanishingly small, with a slight
advantage going to the correct algorithm. This seems to be in good
agreement with the small difference in final network sizes seen in
Table 1.

4. CONCLUSIONS

Schuster and Hori [7] proposed a technique for modeling polyphone
context with weighted finite state transducers whereby all valid three
state-sequences of Gaussian mixture models are enumerated, and
thereafter the possible connections between these three-state sequences
are calculated. Hence, the explicit modeling of all possible poly-
phones is avoided. While Schuster and Hori’s approach to modeling
polyphone context is interesting and conceptually straightforward, it
is incorrect for contexts larger than triphones. In this work, we have
corrected the errors of Schuster and Hori. We have also presented the
results of a set of experiments comparing network size and speech
recognition performance for networks obtained with both Schuster
and Hori’s technique and the correct technique.

5. REFERENCES

[1] S. F. Chen. Compiling large-context phonetic decision trees into
finite-state transducers. In Proc. Eurospeech, pages 1169–1172,
2003.

[2] C. J. Leggetter and P. C. Woodland. Maximum likelihood linear
regression for speaker adaptation of continuous density hidden
markov models. Computer Speech and Language, pages 171–
185, 1995.

[3] M. Mohri. Finite-state transducers in language and speech pro-
cessing. Computational Linguistics, 23(2), 1997.

[4] M. Mohri, F. Pereira, and M. Riley. Weighted finite-state trans-
ducers in speech recognition. Computer Speech and Language,
16:69–88, 2002.

[5] M. Mohri and M. Riley. Network optimizations for large vocab-
ulary speech recognition. Speech Communication, 25(3), 1998.

[6] M. Mohri, M. Riley, D. Hindle, A. Ljolje, and F. Periera. Full
expansion of context-dependent networks in large vocabulary
speech recognition. In Proc. ICASSP, volume II, pages 665–
668, Seattle, 1998.

[7] M. Schuster and T. Hori. Efficient generation of high-order
weighted finite state transducers for speech recognition. In Proc.
ICASSP, pages 201–204, 2005.

[8] R. Sproat and M. Riley. Compilation of weighted finite-state
transducers from decision trees. In Proc. ACL, Santa Cruz, Cal-
ifornia, June 1996.

I 124

