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ABSTRACT 

The acoustic mismatch between the training and test 

environments will lead to the difference of the statistical 

characteristics of speech parameters. Since the statistical 

characteristics of the kurtosis can measure the non-

Gaussianity of a random variable, kurtosis normalization 

will make the training and test speech parameters match the 

standard normal distribution in some sense. In this paper, a 

kurtosis normalization method using sigmoid functions 

(logit functions) in feature space is presented for GMM-

UBM based text-independent speaker verification system. 

Experimental results on the 2004 NIST SRE database show 

that with the new method significant improvement can be 

achieved in not only equal error rate but also minimum 

detection cost compared with baseline system (more than 

33% relative reduction for long speech). 

1. INTRODUCTION 

The acoustic mismatch between the training and test data 

leads to the performance degradation of speaker verification. 

Feature derived from spectrum of speech may be affected 

by many factors such as the microphones, the acoustic 

environments, the transmission channels and so on. Many of 

the approaches used to solve the problems concentrate on 

the normalization of speech features. 

In feature space, resent research has proved the 

mismatch can be lessened when the cumulative distribution 

functions (CDFs) of training and test data are both 

transformed to match that of the standard normal or other 

uniform distribution. The transformations include histogram 

equalization [1][2], feature warping [3][4], short-time 

Gaussianization [5] and so on.  

Histogram equalization and short-time Gaussianization 

have achieved much improvement. However, these methods 

especially concern the short-time distribution of speech 

cepstral and don’t normalize the statistical characteristics 

such as means, variance and higher order cepstral moment

directly. Nevertheless transforming the characteristic of all 

the speech parameters can also be used to reduce the 

mismatch [6]. 

This paper presents a statistical characteristic based 

normalization method. Since the standard kurtosis is able to 

measure the peakness or non-Gaussianity of a random 

variable, the method can lessen the non-Gaussianity by 

optimizing the kurtosis of each dimension of the feature 

parameters with sigmoid functions (logit functions). In the 

method the parameters of sigmoid functions are optimized 

until the kurtosises reach approximate zero (the same as the 

normal distribution). Because of the normalization on both 

the training and test speech, the mismatch between them is 

decreased and the performance of system is improved. 

In addition, short-time feature space normalization 

methods such as short-time Gaussianization have to use 

adjacent frames of parameters to estimate the transform. 

Thus the first and last several frames of parameters are 

wasted, which is sub-optimal when the length of speech is 

short. On the other hand, the one-parameter sigmoid 

function used in this paper is trained offline with other 

speech data.  None of the speech is wasted. So the method is 

more suitable for speaker verification with short speech. 

The scheme of NIST’04 8conversations-1conversation and 

10seconds-10seconds tasks is used to evaluate the 

performance of the proposed normalization method.  

The paper is organized as follows: in section 2, the 

short-time feature space Gaussianization is presented. In 

section 3, we present our kurtosis normalization method. 

And the experiment results are showed in section 4. 

2. FEATURE SPACE  GAUSSIANIZATION 

TRANSFORM 

For a random variable 
DRX , the definition of its 

Gaussianization transformation is to make the transformed 

variable ( )T X  follow the standard normal distribution: 

( ) ~ (0, )T NX I

the transform function ( )T X  is invertible,  differential and 

existent [7]. 

It is difficult to calculate the Gaussianization 

transformation for high dimensional data. In order to 
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employ one dimensional Gaussianization directly, B. Xiang 

applied a linear transformation to the feature to make the 

assumption of independence of feature vector components 

less strong [5]. The linear transformation estimated by the 

Expectation Maximization (EM) algorithm can also make 

the transformed feature more suited to diagonal covariance 

Gaussian mixture models (GMMs). One-dimensional 

Gaussianization transformation is deduced that 
1( ) ( ( ))XT x F x                                                  (1) 

where ( )XF x  and ( )x are respectively the CDFs of 

variable x  to be transformed and the standard normal’s.  

If the ( )XF x  has been known for each value of x , the 

transform can be determined by looking up standard normal 

table. Two approaches have been presented to 

estimate ( )XF x , i.e. a piece-wise constant function 

approximation and Gaussian mixture models approximation. 

The former method is much simpler and easier than the 

latter. With the former method, we can get that 

( )
( ) i

i

rank x
F x

N
                                                (2) 

where ( )irank x  is the rank of ix  in sorted list of samples. 

Combining (1) with (2) yields the final local feature space 

Gaussianization transformion 

1 ( )
( ) ( ),i

i

rank x
T x

N
1 i N                    (3) 

The function (2) suggests that the evaluation of ( )XF x

uses the adjacent N frames parameters, so that the 

transformation takes into account the distribution of a short 

segmental speech. At the same time ( )XF x of the first and 

last 2N  frames can’t be computed exactly. B. Xiang has 

shown the best result is determined when N=300 [5]. If the 

parameter vectors are computed every 10 ms, about 3s of 

speech is wasted. When the training and test speech is short 

it becomes sub-optimal. The short-time Gaussianization 

method especially concerns the short-time distribution of 

speech cepstral. But it doesn’t normalize the statistical 

characteristic directly. In fact, some statistical 

characteristics can perfectly measure the non-Gaussianity, 

and the normalization of them can also take the effect of 

Gaussianization. Thus we would like to propose a kurtosis 

normalization method here. 

3. KURTOSIS NORMALIZATION BASED ON 

SIGMOID FUNCTIONS 

As we know the standard kurtosis can measure the peakness 

or non-Gaussianity of a random variable. The kurtosis of a 

random variable x  is defined as  
4

2 2

( )
( ) ( ) 3

( )
E x

K x
E x

                                      (4) 

Kurtosis is a scale independent dimensionless 

parameter. A normal random variable has a kurtosis of zero. 

If a random variable has a kurtosis less than zero, it is 

termed platykurtic i.e. sub-Gauss. If it has kurtosis greater 

than zero, it is termed leptokurtic i.e. super-Gauss. Speech 

signals are generally leptokurtic, so are speech cepstral 

parameters. A) and B) of Figure1 compare the probability 

density function (pdf) of one dimension of the MFCC with 

that of the standard normal. In the experiment, 1130089 

samples are used in both of the two distributions. 
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Figure 1: The comparison of pdfs 
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Figure 2: the sigmoid functions (the logit functions) 

The sigmoid function (the logit function) can be 

expressed as  

( , )
1 exp( )

a
f x k b

kx
                                    (5) 

where a and b are constant coefficients, k>0. In order to 

keep the means of speech parameters invariable when the 

sigmoid function is used, coefficients a and b are chosen to 

be 2 and 1 respectively.  
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From figure 2, it can be found that the sigmoid function 

changes greatly when the variable x  is small. When x

becomes larger, the variety of ( )f x  will be lessened. The 

smaller the parameter k in the sigmoid function becomes, 

the more obvious the trend tends to be. Because of the 

difference between MFCC and the standard normal, 

substituting the sigmoid function for (3) can also take effect 

of Gaussianization transformation. We have proved 

mathematically that the optimization of kurtosis can be 

achieved by selecting the transforming factor k of sigmoid 

functions. How to optimize k is shown as follows. 

Conceptually, the transforming factor k represents the 

deviatability between one dimension of MFCC and the 

normal random variable. In the work described here, the 

transforming factor k is chosen to minimize the absolute 

value of the kurtosis of the transformed parameter, i.e. 
^

arg min ( ( , ))
k

k K f x k                              

4

2 2

( ( , ) )
arg min 3

( ( , ) )k

E f x k

E f x k
                              (6) 

A closed-form solution for 
^

k  from (6) may be difficult 

to obtain. In fact, the experiments show that the optimum 

transforming factor is obtained by searching over a grid 

spaced between 0.050  k 1.070. Computing each factor of 

the grid can get the optimized value of factor k.

After kurtosis normalization, cepstral variance 

normalization (CVN) can also be used. It is because the 

CVN technique only multiplies a coefficient without 

changing the kurtosis. 

In fact, the non-Gaussianity of each dimension of the 

MFCCs is different. The experiment shows that their 

kurtosises vary from 0.205 to 2.516. Thus training different 

k parameters for each dimension is necessary. From B) and 

C) of figure1, we find the MFCC approximates the normal 

distribution when its kurtosis is decreased to zero.  

It seems that each dimension of separate speaker using 

different sigmoid functions may be more reasonable. But 

experiments show that normalization kurtosis for each 

speaker will lead to the worst result, nearly entirely error. 

Thus kurtosis normalization is performed globally over a 

development database. 

4. EXPERIMENTS AND RESULTS 

4.1. Database 

The performance of the described normalization methods is 

evaluated on NIST’04 8conversations-1conversation (8c-1c) 

and 10seconds-10seconds (10s-10s) Speaker Recognition 

Evaluation (SRE) tasks. Only male speakers are used here. 

This database is a subset of the Switchboard (SWB) cellular 

telephone corpus. The 8c-1c task uses eight single channel 

conversational sides of one speaker for training and then 

tests on one single channel conversation side. Each 

conversation side is about 5 minute including silence 

duration. The 10s-10s task uses approximately 10 seconds 

of estimated speech in training and test. There are 170 male 

speakers along with a total of 8088 verification trials in the 

8c-1c task and 246 male speakers along with 9375 trials in 

the 10s-10s task. 

4.2. Evaluation Measure 

The evaluation of the speaker verification system is based 

on Detection Error Tradeoff (DET) curves which show the 

tradeoff between the two types of detection errors (false 

alarm, and false rejection). On the DET curve typically two 

specific operating points may be of interest. One of them is 

the Equal-Error Rate (EER) where the FA rate equals the 

FR rate, which is used as a summary performance measure 

for comparing systems. The other is the point having the 

lowest detection cost. Detection cost function (DCF) is 

defined for the NIST evaluation. 

| |FA FA N N FR FR T TDCF C P P C P P

where PN and PT are the priori probability of the specified 

nontarget and target speakers with PN=0.99 and PT=0.01.

The specific cost factors are CFA=1 and CFR=10, which 

shifts the point of interest toward low FA rates [8][9]. 

4.3. System Description 

The baseline system is essentially a GMM-UBM based text-

independent speaker verification system [10]. The feature 

vectors are composed of 16 mel-cepstal coefficients 

(MFCCs) and their 16 corresponding deltacepstra 

coefficients without the zeroth one. The vectors are 

computed every 10 ms with a 20 ms Hamming window. An 

energy based silence removal technique is used to discard 

silence frames in both training and test vectors. Cepstral 

mean subtraction (CMS) and RASTA processing are also 

used to normalize the linear channel. 

With the data from NIST’01 male speakers, expectation 

Maximization (EM) estimation is used to train a universal 

background model (UBM) with 2048 mixtures for the 8c-1c 

task and a UBM with 512 mixtures for the 10s-10s task 

respectively. Given the UBM, the target speaker models are 

then derived using Bayesian adaptation. For the systems 

used in the experiment, only the means of the mixture 

components are adapted.  

4.4. Experimental Results 

Table 1 and figure 3 show the results of normalization 

methods described in Section 2 and 3. In the short-time 

Gaussianization method, the number of the frames used to 

estimate the distribution is 300. The kurtosis normalization 
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method is based on sigmoid functions whose parameters are 

trained with the same data as that use to train UBM. The 

two normalization methods are both applied after the MFCC 

are processed by CMS and RASTA technique.  

Table 1: the comparison of the DCF and EER

Task Method Min. 

DCF 

EER 

( % )

baseline 0.0928 29.89 

Short-time Gaussianization 0.0898 29.70 

10s- 

10s 

Kurtosis normalization 0.0881 28.25 

baseline 0.0541 11.31 

Short-time Gaussianization 0.0375 7.60 

8c-

1c

Kurtosis normalization 0.0354 7.49 
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Figure 3: the comparison of the DET curves

From table 1 and figure 3, it is found that the 

performance of the two tasks is improved with both the two 

normalization methods.  

As to the 8c-1c task, the performance is improved 

much with kurtosis normalization compared with baseline 

system (34.6% relative reduction for the minimum DCF and 

33.8% for the EER). The performance of Kurtosis 

normalization is comparable with short-time 

Gaussianization, a little better in the 10s-10s task. It is 

because with the short-time Gaussianization method the first 

and last 150 frames (about 3s of speech) can’t be computed 

exactly and it is sub-optimal when the training and test 

speech is only 10s.  

5. CONCLUSIONS 

In this paper we presented a kurtosis normalization method 

for text-independent speaker verification. While the 

traditional short-time Gaussianization normalizes short-time 

distribution. Our method based on sigmoid functions 

normalizes the training and test data concerning the 

statistical characteristic. Experiments on the NIST’04 SRE 

database have proved kurtosis normalization is comparable 

with short-time Gaussianization, when speech is short the 

former performs a little better. In the future, we will test the 

effective of the technique on larger database. 
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