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ABSTRACT

Recent work in speaker recognition has demonstrated the
advantage of modeling stylistic features in addition to
traditional cepstral features, but to date there has been little
study of the relative contributions of these different feature types
to a state-of-the-art system. In this paper we provide such an
analysis, based on SRI’s submission to the NIST 2005 Speaker
Recognition Evaluation. The system consists of 7 subsystems (3
cepstral, 4 stylistic). By running independent N-way subsystem
combinations for increasing values of N, we find that (1) a
monotonic pattern in the choice of the best N systems allows for
the inference of subsystem importance; (2) the ordering of
subsystems alternates between cepstral and stylistic; (3)
syllable-based prosodic features are the strongest stylistic
features, and (4) overall subsystem ordering depends crucially
on the amount of training data (1 versus 8 conversation sides).
Improvements over the baseline cepstral system, when all
systems are combined, range from 47% to 67%, with larger
improvements for the 8-side condition. These results provide
direct evidence of the complementary contributions of cepstral
and stylistic features to speaker discrimination.

1. INTRODUCTION

Automatic speaker recognition is the task of identifying a
speaker based on his or her voice. Conventional systems for this
task use features extracted from very short time segments of
speech, and model spectral information using Gaussian mixture
models (GMMs) [1]. This approach, while successful in matched
acoustic conditions, suffers significant performance degradation
in the presence of handset mismatch or ambient noise.
Furthermore, since spectral information is not modeled as a
sequence, short-term cepstral modeling fails to capture longer-
range stylistic aspects of a person’s speaking behavior, such as
lexical, rhythmic, and intonational patterns. Recently, it has been
shown that systems based on longer-range stylistic features
provide significant complementary information to the
conventional system [2, 3]. In addition, modeling of spectral
information by GMMs can be improved or complemented by the
use of other modeling techniques like support vector machines
(SVMs) [4,5], or by transformations of the cepstral space [6].

The National Institute of Standards in Technology (NIST)
conducts annual speaker recognition evaluations (SREs) to allow

for meaningful comparisons of different approaches and to
assess their performance relative to state-of-the-art systems. In
this paper, we describe SRI’s submission to the 2005 SRE. The
system uses a number of novel long-range features, as well as
new approaches to short-term cepstral modeling, and has
achieved outstanding results in the evaluation. The main focus of
this paper, besides describing the submitted system, is on the
analysis of the relative importance of the cepstral and stylistic
subsystems we have developed. This is essential for the
understanding of the source of the achieved improvements in
performance with respect to the baseline cepstral GMM system
and for guiding future research.

The remainder of the paper is organized as follows. Section 2
briefly describes the evaluation setup, the development datasets
and the speech recognition system used. Sections 3 and 4
summarize the subsystems included in our submission and the
methods used to combine them. Section 5 presents results and an
analysis of subsystem contributions. Final conclusions are given
in Section 6.

2. BASIC SETUP

The 2005 NIST SRE dataset (referred to as SRE05) is part of the
conversational speech data recorded in the Mixer project. The
data contains mostly English speech and was recorded over
telephone (landline and cellular) channels. The evaluation
consists of twenty main conditions differing in the amount of
available training and test data, and in the recording conditions
[7]. The core condition, for which all evaluation participants are
required to submit results, allows one side of a telephone
conversation for training and another side for testing. The
common condition is defined as the subset of trials for any of the
main conditions for which all train and test conversations were
spoken in English using handheld phones. We submitted results
for the (1-side train, 1-side test) and (8-side train, 1-side test)
conditions. The common condition subset for these conditions
consisted of 20,907 and 15,947 trials respectively.

The main performance metric in the NIST SRE is the
detection cost function (DCF), defined as the Bayes risk with
Ptarget = 0.01, Cfa=1, and Cmiss=10 [7]. In this paper, results are
presented in terms of the minimum value of the DCF measure
over all possible score thresholds and the equal error rate (EER),
for the trials corresponding to the common condition.

The component subsystems and combiners described in this
paper were developed using three different data sets:
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Switchboard, Fisher, and SRE04 (last year’s evaluation set). The
Fisher database consists of three disjoint sets: a background set
and two test splits, Fisher1 and Fisher2. The set of Fisher trials
was designed to be similar to the SRE04 set in the proportion of
impostor to true-speaker trials and other characteristics. For a
description of these databases, see [8]. The background data
from Switchboard and Fisher (or, in some cases, a subset of it)
was used for creation of the background models for all
component systems described in Section 3. A set of 249 1-side
speaker models balanced by gender and handset type, extracted
from Fisher2 data, was used to compute TNORM scores [9].
SRE04, Fisher and SRE05 data were processed exactly the same
way, using the same background models and TNORM speakers.
The scores from Fisher and SRE04 were used for development.

Transcriptions were generated with SRI's 3xRT CTS
recognition system. The final pass of the recognition, with 21%
word error rate (WER) on Fisher data, was used for all the
component systems that needed transcriptions, except for the
state duration system for which we used an earlier stage of the
recognition (with 29% WER). This is because we found that for
state duration features the less constrained automatic speech
recognition (ASR) output leads to better speaker recognition
performance. See [8] for more details on the ASR system used.

3. COMPONENT SUBSYSTEMS

Our submission consisted of the combined scores from seven
subsystems. Three of those systems are based on cepstral
features, while the other four aim to model longer-term stylistic
features. Table 1 shows the performance of each of these systems
for SRE05. All results shown are after TNORM.

Cepstral GMM system: This is a conventional cepstral
Gaussian mixture model system adapted from a universal
background model, using a 2048-component GMM. Its details
are described in [8].
Cepstral SVM system: This system uses multiple projections
of PCA-transformations of mean polynomial vectors over
cepstral features (two of which are variance normalized). These
features are modeled using SVMs, generating four separate
scores that are combined with equal weight to produce the final
score [5].
MLLR transform SVM system: This system uses as features
the components of the maximum likelihood linear regression
(MLLR) transforms used in SRI's speech recognition system for
speaker adaptation. The transform coefficients are modeled by
SVMs [6].
Word N-gram SVM system: This system uses an SVM with a
linear kernel with first-, second-, and third-order word N-gram
frequencies as features [8].
SNERF system: This system uses a set of prosodic features
extracted over automatically estimated syllables. The modeling
is done by SVMs [10]. Apart from the features described in
[10], a set of word-specific SNERFs were added to the vector of
features. The addition of these new features produced an
improvement of around 10% relative to the original SNERF
system on the development sets, even though the new features
are much more sparse (comprise only 24 unique words) and are
already modeled indirectly in the overall SNERF system.

Table 1: Performance of components systems for SRE05 (DCF
refers to minimum DCF).

1-side training 8-side training
System

Short
name DCFx100 %EER DCFx100 %EER

Cepstral GMM CepGm 2.48 7.17 1.69 4.91
MLLR SVM CepMl 2.52 10.34 1.20 5.50
Cepstral SVM CepSv 2.68 7.26 1.03 3.05
SNERF StySn 5.22 14.06 2.75 6.52
State Dur StySd 6.03 15.36 3.19 8.02
Word Dur StyWd 7.83 19.23 3.74 8.62
Word N-gram StyWn 8.60 24.58 4.84 11.25

Duration systems: Two sets of duration features – state- and
word-level – modeled by GMMs are used in this system [11].
The phone-level durations were not used in this evaluation since
they were found to be redundant in most cases given the other
available systems.

With respect to last year’s evaluation, the cepstral SVM and
the MLLR transform SVM systems are new additions. Also, the
SNERF system has been improved significantly by the inclusion
of the word-dependent features. Several of the systems we used
last year were not used in this year’s system because we found
that they did not significantly improve the performance on the
SRE04 data.

4. SYSTEM COMBINATION METHODS

Three different combination methods were used for merging the
scores produced by the subsystems into a single score. In all
three cases, the scores from the subsystems are first normalized
to have zero mean and unit variance with respect to the statistics
in the set used for training the combiner.

Neural network (NN) combiner: The baseline combiner is a
single-layer feed-forward network that uses a sigmoid output
node during training and a linear output for the final predictions.
The linear output allows better combination of these predictions
with the ones from the other two combiners. The perceptron is
trained to achieve minimum squared error with output labels 0
(impostor) and 1 (target). Target and impostor priors are set to
0.09 and 0.91 during training in order to optimize the DCF.
SVM combiner: Three SVMs with polynomial kernels of orders
1, 2, and 3 are trained with equal penalty for false acceptance
and false rejection. The three scores obtained are averaged to
produce the final score.
Class-dependent (CD) combiner: This combiner relies on
clustering both the target models and the test utterances in a
vector space defined by the MLLR features computed for the
speaker during ASR [12]. For each class in the product set, that
is, (target, test) pair of clusters, we allocate a separate combiner
trained to fit the data in that class. During testing, a weighted
average of the scores given by each of those combiners is used
as the final score. The weights for averaging are given by the
probability of the trial of belonging to each of the classes.
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The combiner for the 2005 system was trained using the
scores obtained for SRE04 data, which we believed to be a
reasonable match to the SRE05 data. This proved to be a good
choice: the EER for the NN combiner on SRE05 is around 5%
better when the combiner is trained on SRE04 data than when it
is trained on Fisher1 data.

The final score submitted for the evaluation was computed as
the average of the scores given by the three combiners described
above. Scores from the three combiners are previously
normalized to zero mean and unit variance using the training set
statistics. This allows for the usage of equal weights in the final
sum. A few different weights for the three combiners were tried
during development, but a simple average proved to be the more
robust choice. This final combiner will be called NSC
(NN+SVM+CD) combiner in the following sections.

5. RESULTS AND ANALYSIS

With all these systems available for combination and various
different ways of combining them, several questions arise:
Which systems are more important for the combination? Can we
ignore some of them without loosing accuracy? Does the
importance of the systems depend on the amount of training data
or on the combiner approach? In this section we will try to give
answers to these questions.

Table 2 shows combination results for some meaningful
subsets of systems. The first line corresponds to the cepstral
GMM system alone. This system is the conventional speaker
recognition system and is commonly used as the baseline against
which new systems are compared. The second line shows the
combination results of that system with the two novel cepstral
systems, the cepstral SVM and the MLLR SVM. The combined
system achieves an improvement in the DCF of 33% for the 1-
side condition and 53% for the 8-side condition. Similar
improvements are obtained when combining the baseline with
the four stylistic systems: word N-gram, SNERF and both
duration systems. Finally, when all systems are combined, the
relative improvement over the baseline alone is 47% in the 1-
side condition and 67% in the 8-side condition. Clearly, the
benefit of the new systems, both cepstral and stylistic, increases
as more data is available for training.

Table 2: Performance for the cepstral GMM (baseline) and the
combination of that system with the rest of the cepstral systems,
the stylistic systems and all system together.

1-side training 8-side trainingSystems being
combined DCFx100 %EER DCFx100 %EER

Baseline 2.48 7.17 1.69 4.91

Baseline + new cepstral 1.66 4.61 0.80 2.45

Baseline + stylistic 1.77 4.89 0.83 2.45

All systems combined 1.31 4.10 0.56 2.03

Tables 3 and 4 show the best combination results when we
allow a fixed number of systems for the NN and the NSC
combiners for both training conditions. Each pair of lines in
these figures shows which systems lead to the best performance

for each combiner when N systems are allowed. There is only
one line for the best 1-way because that choice is obviously
independent of the combiner. Note first that the DCF obtained
when we use the NSC combiner is always better than that with
the NN combiner, for any number of allowed systems.
Furthermore, except for the 7-way case, adding a new system
always improves the performance for the NSC combiner (this is
not always true for the NN combiner, as can be seen by
comparing the 5-way with the 6-way results in Table 3). After
the sixth system is added, though, we observe no improvement
by adding the final system. In fact, in the 8-side condition the
performance is significantly hurt by adding the state duration
system to the combination. This indicates two things: first, the
state duration system is most probably redundant once the other
systems are being used, and second, our combiners are not able
to handle redundant features well. Ideally, we should be able to
detect these cases and ignore those systems that are not needed.
To this end, further research on system selection and more robust
combiners is needed.

Tables 3 and 4 also offer a great opportunity for analyzing
the importance of the systems. Even though the best N systems
for each value of N are chosen independently so as to optimize
the performance for that number of systems, for the NSC
combiner the subsets of systems chosen for a certain N always
includes the subset chosen for N-1 systems. This was a
remarkable finding. There is nothing forcing, say, the best 2-way
combination to include the single best system, rather than two
other systems that, when combined, give better performance than
the best system alone. But given that the results turned out this
way, we can very easily rank the importance of the seven
systems by looking at the order in which they are being added as
we allow more systems in the combination.

From the tables we see that the order in which systems are
chosen is highly dependent on the amount of training data. In
Table 1 we can see that the performance of the subsystems is,
without exception, relatively closer to the baseline in the 8-side
case than in the 1-side case. For example, the EER of the
SNERF system is twice that of the baseline for the 1-side case,
while it is only 30% worse for the 8-side case. This explains the
bigger relative improvement obtained from combining the
baseline with the other systems for the 8-side condition than the
1-side condition (Table 2), and it also explains the difference in
the order in which the systems are added for those two
conditions in Tables 3 and 4. Both the SNERF and the Word-
Ngram systems are added earlier in the 8-side condition than in
the 1-side condition where they have a worse performance
relative to the baseline. Overall we see that both factors, the
performance of the system with respect to the baseline and the
amount of new information the system conveys about the
speakers, affect which system is chosen next. This qualitative
observation accounts for the alternated way stylistic and cepstral
systems are added to the combination.

We are also interested in knowing how much improvement
we have achieved since last year. For this, we compare the
performance of last year’s system and this year’s system when
run on the English-only SRE04 subset. (Note that these results
do not agree with those in [8] because the latter corresponded to
the common condition trials. We are presenting all-English
results here because the number of trials is larger, allowing for
more significant comparisons.) The two systems differ in many
aspects: the background data this year includes both Fisher and
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Switchboard data, while last year’s included only Fisher data,
new systems have been added, some old ones have been
discarded, and some have been improved. Table 5 compares the
results when the combiners are trained on Fisher1 data; we can
see overall improvements between 25% and 43% in both DCF
and EER.

Table 3: Best possible N-way combinations for the NN and the
NSC combiners for the 1-side training condition. System names
refer to those defined in Table 1.

N
Com
biner

Cep
Gm

Cep
Ml

Sty
Sn

Sty
Wd

Cep
Sv

Sty
Wn

Sty
Sd

DCF
x100

1 - 2.47
NN 1.98

2
NSC 1.77
NN 1.67

3
NSC 1.58
NN 1.58

4
NSC 1.44
NN 1.49

5
NSC 1.33
NN 1.60

6
NSC 1.31
NN 1.47

7
NSC 1.31

Table 4: Same as Table 3 but for 8-side training condition.

N
Com
biner

Cep
Sv

Sty
Sn

Cep
Ml

Sty
Wn

Sty
Wd

Cep
Gm

Sty
Sd

DCF
x100

1 - 1.03
NN 0.75

2
NSC 0.74
NN 0.66

3
NSC 0.64
NN 0.61

4
NSC 0.58
NN 0.59

5
NSC 0.55
NN 0.59

6
NSC 0.54
NN 0.60

7
NSC 0.56

Table 5: Performance on SRE04 data using 2004 and 2005
systems with NN and NSC combiners trained on Fisher data.

1-side training 8-side trainingSystem/Combiner
used DCFx100 %EER DCFx100 %EER

SRE04/NN 3.15 7.73 1.60 3.50

SRE05/NN 2.20 5.27 0.91 2.91

SRE05/NSC 2.18 4.85 0.91 2.62

Rel. improvement 31% 37% 43% 25%

6. SUMMARY AND CONCLUSIONS

We have described our submission to the 2005 NIST Speaker
Recognition Evaluation. Results show a relative improvement
over last year’s performance (on last year’s data) of more than
25% relative. This improvement was achieved mainly by the
introduction of two new cepstral systems, the improvement of
the SNERF system and the use of a new class-dependent
combination method. We have focused our analysis of results on
the relative importance of the cepstral and stylistic systems being
combined. It was found that improvements over the baseline
cepstral system when combining all subsystems range from 47%
to 67%, with larger improvements for the 8-side condition. This
justifies and encourages the development of those nonstandard
systems that utilize prosodic or lexical features, or which model
the spectral features in a manner different from GMMs. Analysis
of the order in which systems are chosen for the best
combination of increasing number of systems shows an alternate
pattern of stylistic and cepstral features, with higher priority for
the stylistic features when more training data is available.
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