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ABSTRACT
Gaussian mixture models with universal backgrounds

(UBMs) have become the standard method for speaker recog-

nition. Typically, a speaker model is constructed by MAP

adaptation of the means of the UBM. A GMM supervector

is constructed by stacking the means of the adapted mixture

components. A recent discovery is that latent factor analysis

of this GMM supervector is an effective method for variabil-

ity compensation. We consider this GMM supervector in the

context of support vector machines. We construct a support

vector machine kernel using the GMM supervector. We show

similarities based on this kernel between the method of SVM

nuisance attribute projection (NAP) and the recent results in

latent factor analysis. Experiments on a NIST SRE 2005 cor-

pus demonstrate the effectiveness of the new technique.

1. INTRODUCTION
For the task of text-independent speaker verification, like-

lihood ratio detection using Maximum A-Posteriori (MAP)

adapted Gaussian Mixture Models (GMMs) from a Univer-

sal Background model (UBM) has become the standard ap-

proach [1]. While this approach provides very good perfor-

mance, a continuing challenge for robust speaker verification

is dealing with channel or session variability (due to micro-

phones, acoustic environments, etc.).

An interesting area of recent work in GMM speaker

recognition is the use of latent factor analysis to compensate

for speaker and channel variability [2]. These methods work

by modeling the MAP adapted means of a GMM using latent

factors to describe variation. A key method in this approach

is to use a GMM supervector consisting of the stacked means

of the mixture components. This GMM supervector can be

used along with latent factor analysis to perform GMM chan-

nel compensation [2].

Support vector machines (SVMs) have proven to be a new

effective method for speaker recognition, e.g. [3, 4]. SVMs
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perform a nonlinear mapping from an input space to an SVM

expansion space. Linear classification techniques are then ap-

plied in this potentially high-dimensional space. The main

design component in an SVM is the kernel, which is an inner

product in the SVM feature space. Since inner products in-

duce distance metrics and vice versa, the basic goal in SVM

kernel design is to find an appropriate metric in the SVM fea-

ture space relevant to the classification problem.

In this paper, we combine the recent results in SVM meth-

ods with the GMM supervector concept. We derive a linear

kernel based upon an approximation to KL divergence be-

tween two GMM models. We then apply the SVM nuisance

attribute projection method [5] to the resulting kernel. We

demonstrate similarities between our approach and the latent

factor analysis method.

The outline of the paper is as follows. In Section 2, we

describe the basic framework for SVMs. In Section 3, we

outline the GMM supervector expansion. Section 4 describes

the linear kernel for SVM speaker verification. Section 5 dis-

cusses the SVM NAP method and relations with latent factor

analysis. Finally, in Section 6, we demonstrate the potential

of the approach by applying it to a NIST speaker recognition

evaluation 2005 task and comparing it to a standard GMM

approach.

2. SUPPORT VECTOR MACHINES
An SVM [6] is a two-class classifier constructed from sums

of a kernel function K(·, ·),

f(x) =

L∑
i=1

αitiK(x,xi) + d, (1)

where the ti are the ideal outputs,
∑L

i=1
αiti = 0, and

αi > 0. The vectors xi are support vectors and obtained

from the training set by an optimization process [7]. The ideal

output are either 1 or −1, depending upon whether the corre-

sponding support vector is in class 0 or class 1, respectively.

For classification, a class decision is based upon whether the

value, f(x), is above or below a threshold.

The kernel K(·, ·) is constrained to have certain properties
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(the Mercer condition), so that K(·, ·) can be expressed as

K(x,y) = b(x)tb(y), (2)

where b(x) is a mapping from the input space (where x lives)

to a possibly infinite-dimensional SVM expansion space.

The focus of the SVM training process is to model the

boundary between classes. For a separable data set, SVM op-

timization chooses a hyperplane in the expansion space with

maximum margin [6]. The data points from the training set ly-

ing on the boundaries are the support vectors in equation (1).

3. GMM SUPERVECTORS
Suppose we have a Gaussian mixture model universal back-

ground model (GMM UBM),

g(x) =

N∑
i=1

λiN (x;mi,Σi) (3)

where λi are the mixture weights, N () is a Gaussian, and

mi and Σi are the mean and covariance of the Gaussians,

respectively.

Given a speaker utterance, GMM UBM training is per-

formed by MAP adaptation [1] of the means, mi. From this

adapted model, we form a GMM supervector. The process is

shown in Figure 1.
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Fig. 1. GMM supervector concept

The GMM supervector can be thought of as a mapping be-

tween an utterance and a high-dimensional vector. This con-

cept fits well with the idea of an SVM sequence kernel [3]—a

kernel that directly compares two speech utterances, utta and

uttb, and produces K(utta, uttb). The kernel can be written

as K(utta, uttb) = b(utta)tb(uttb) because of the Mercer

condition. The GMM supervector mapping is then part of the

mapping of utta to b(utta).

4. GMM SUPERVECTOR LINEAR KERNEL
Suppose we have two utterances, utta and uttb. We train

GMMs, ga and gb as in (3), on the two utterances, respec-

tively, using MAP adaptation. This results in GMM super-

vectors, ma and mb. A natural distance between the two ut-

terances is the KL divergence,

D(ga‖gb) =

∫
Rn

ga(x) log

(
ga(x)

gb(x)

)
dx (4)

Unfortunately, the KL divergence does not satisfy the Mer-

cer condition, so using it in an SVM is difficult (although

possible—see [8]).

Instead of using the divergence directly, we consider an

approximation. The idea is to bound the divergence using the

log-sum inequality [9],

D(ga‖gb) ≤
N∑

i=1

λiD
(
N (·;ma

i ,Σi)‖N (·;mb
i ,Σi)

)
(5)

where we have represented the ith mixture component means

of the adapted supervectors by ma
i and mb

i . Assuming diago-

nal covariances, the approximation in (5) can be calculated in

closed form as

d(ma,mb) =
1

2

N∑
i=1

λi(m
a
i − mb

i)Σ
−1

i (ma
i − mb

i). (6)

The final inequality is then

0 ≤ D(ga‖gb) ≤ d(ma,mb) (7)

from which we see that if the distance between ma and mb

is small, the corresponding divergence is small. The distance

in (6) has been used with success in speaker clustering appli-

cations [10]. From the distance in (6), we can find the corre-

sponding inner product which is the kernel function,

K(utta, uttb) =
N∑

i=1

λim
a
i Σ

−1

i mb
i

=

N∑
i=1

(√
λiΣ

− 1

2

i ma
i

)t (√
λiΣ

− 1

2

i mb
i

)
.

(8)

The kernel in (8) is linear in the GMM supervector; i.e.,

the mapping from the GMM supervector to SVM expansion

space is a diagonal linear transform. Note since it is linear, it

satisfies the Mercer condition [6].

A useful aspect of the kernel in (8) is that we can apply

the model compaction technique from [3]. That is, the SVM

in (1) can be summarized as

f(x) =

(
L∑

i=1

αitib(xi)

)t

b(x) + d = wtb(x) + d, (9)

where w is the quantity in parenthesis in (9). This means

we only have to compute a single inner product between the

target model and the GMM supervector to obtain a score.
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5. SVM NAP AND LATENT FACTOR ANALYSIS
The SVM nuisance attribute projection (NAP) method [5]

works by removing subspaces that cause variability in the ker-

nel. NAP constructs a new kernel,

K(ma,mb) = [Pb(ma)]t
[
Pb(mb)

]
= b(ma)tPb(mb)

= b(ma)t(I − vvt)b(mb)

(10)

where P is a projection (P2 = P), v is the direction being

removed from the SVM expansion space, b(·) is the SVM

expansion, and ‖v‖2 = 1. The design criterion for P and

correspondingly v is

v∗ = argmin
v,‖v‖2=1

i,j∑
Wi,j‖Pb(mi) − Pb(mj)‖2

2
(11)

where the {mi} are typically a background data set. Here,

Wi,j can be selected in several different ways. If we have

channel nuisance variables (e.g., electret, carbon button, cell)

and a labeled background set, then we can pick Wi,j = 0
when the channels of mi and mj are the same, and Wi,j = 1
otherwise. Another criterion is to design the projection based

on session variability. In this case, we pick Wi,j = 1 if mi

and mj correspond to the same speaker, and Wi,j = 0 oth-

erwise. The idea in both cases is to reduce variability in the

SVM kernel distance with respect to nuisances—channel or

session.

The solution to (11) is an eigenvalue problem,

A(diag(W1) − W)Atv = γv (12)

where A is a matrix whose columns are b(mi), W is the

matrix consisting of Wi,j , and 1 is the vector of all ones.

We consider the case of session variability compensation

and only one speaker with n sessions; the general case of mul-

tiple speakers is a straightforward extension. The SVM NAP

problem (12) becomes

AJAtv = (AJ)(AJ)tv =
γ

n
v (13)

where J = I − (1/n)11t. The effect of the J matrix in (13)

is to replace every vector mi by how much it deviates from

the average vector across all sessions, b̄. The operation

(AJ)(AJ)t is just an autocorrelation. Thus, for this partic-

ular case of NAP, we are finding the principal component of

the autocorrelation matrix of the vectors AJ,

(AJ)(AJ)t =

n∑
i=1

(b(mi) − b̄)(b(mi) − b̄)t (14)

In the latent factor analysis method of Kenny [2], the

GMM supervector m(s, i) is dependent on the speaker s and

the session i. The supervector is a sum of a speaker compo-

nent and a session dependent vector,

m(s, i) = m(s) + Un(s, i). (15)

The latent factor n(s, i) is assumed to be zero mean, unit vari-

ance and Gaussian. For a large number of sessions, this means

m̄ =
1

n

n∑
i=1

m(s, i) ≈ m(s). (16)

So, we can derive the subspace generated by U by finding the

principal components of the autocorrelation matrix

R =
n∑

i=1

(m̄ − m(s, i))(m̄ − m(s, i))t. (17)

Comparing equations (14) and (17), we see that NAP with

the linear kernel, b(mi) = mi, and session variability as a

nuisance variable (13) produces the same subspace as latent

factor analysis.

The relation between NAP and factor analysis opens up

new possiblities. First, note that the SVM NAP method of us-

ing the kernel matrix [5] can be applied to solve for the sub-

space generated by U. Second, for a nonlinear kernel [11],

SVM NAP uses a nonlinear expanded version of the GMM

supervector producing a variability compensation method dis-

tinct from the linear method presented here. Third, note that

the method of using the subspace is different between SVM

NAP and latent factor analysis. For SVM NAP, the subspace

is removed from the GMM supervector by projection. For

Vogt’s latent factor analysis [12], an iterative method is used

to estimate the latent variables, and then the variability is sub-

tracted from the GMM supervector. Further work is needed

to understand the advantages of these different approaches.

6. EXPERIMENTS
We performed experiments on the 2005 NIST speaker recog-

nition (SRE) corpus. We focused on the single-side 8 conver-

sation train, single-side 1 conversation test, English handheld

telephone task (the common evaluation condition) [13]. This

setup resulted in 1, 672 true trials and 14, 406 false trials.

For feature extraction, a 19-dimensional MFCC vector is

found from pre-emphasized speech every 10 ms using a 20 ms

Hamming window. Delta-cepstral coefficients are computed

over a ±2 frame span and appended to the cepstra producing

a 38 dimensional feature vector. An energy-based speech de-

tector is applied to discard vectors from low-energy frames.

To mitigate channel effects, RASTA, feature mapping, and

mean and variance normalization are applied to the features.

The GMM UBM consists of 2048 mixture components.

For GMM MAP training, we adapt only the means with a

relevance factor of 16 [1]. The GMM UBM was trained us-

ing EM from the following corpora: Switchboard 2 phase 1,

Switchboard 2 phase 4 (cellular), and OGI national cellular.
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We produced GMM supervectors on a per conversa-

tion (utterance) basis using MAP adaptation. The kernel in

equation (8) was implemented using SVMTorch as an SVM

trainer [7]. A background for SVM training consists of GMM

supervectors labeled as −1 extracted from utterances from ex-

ample impostors [3]. An SVM background was obtained by

extracting 2, 326 GMM supervectors from conversations in an

English subset of the LDC Fisher corpus.

For enrollment of target speakers, we produced 8 GMM

supervectors from the 8 conversations. We then trained an

SVM model using the target GMM supervectors and the SVM

background. This resulted in weights and support vector se-

lection from the target speaker and background GMM super-

vector data sets. For the linear kernel (8), we applied model

compaction (9) to obtain a smaller representation.

For SVM NAP, a corank 64 projection was designed based

on session variability, see Section 5. The projection was

trained with Switchboard 2 parts 1, 4, and 5. This projection

was applied to the SVM background and to all training utter-

ances. No projection was needed in scoring since P2 = P.

Results for the various approaches are shown in Figure 2.

In the figure, GMM Super Linear has the kernel (8). GMM

Super NAP 64 demonstrates applying the SVM NAP method

to the GMM supervector linear kernel. Also, in the figure,

we compare the GMM supervector system with two standard

GMM systems, labeled as GMM UBM and GMM ATnorm.

The standard GMM implementation uses the same features

as our GMM supervector system. The GMM UBM system

is a standard MAP adaptation system with no score normal-

ization. The GMM ATnorm system uses TNorm speakers

selected adaptively from the LDC Fisher and Mixer corpora

with the method described in [14]. For the GMM Super NAP

64 system, the equal error rate (EER) is 3.13%, and the NIST

minimum decision cost function value is 0.010.

Figure 2 shows the promise of the new approach. The lin-

ear GMM supervector kernel outperforms a standard GMM

configuration for low false alarm rates and at EER. This

excellent performance is coupled with the fact that the

GMM supervector SVM has considerably less computational

complexity—no TNorm operation is applied for the GMM

supervector system.

7. CONCLUSIONS
We have demonstrated a novel kernel for SVMs using GMM

supervectors. The SVM was shown to have excellent perfor-

mance on a NIST SRE 2005 task and to outperform standard

GMM systems. Application of session variability compen-

sation with SVM NAP improved performance substantially.

Future work includes exploring other GMM supervector ker-

nels and applying these methods to HMM MAP adaptation.

8. REFERENCES

[1] Douglas A. Reynolds, T. F. Quatieri, and R. Dunn, “Speaker verifica-

tion using adapted Gaussian mixture models,” Digital Signal Process-
ing, vol. 10, no. 1-3, pp. 19–41, 2000.

0.1 0.2 0.5  1  2  5 10 20
0.1

0.2

0.5

 1 

 2 

 5 

10

20

False Alarm probability (in %)

M
is

s 
pr

ob
ab

ili
ty

 (
in

 %
)

GMM UBM

GMM ATNorm

GMM Super Linear

GMM Super NAP 64

Fig. 2. A comparison of GMM supervector methods with

standard GMM UBM and ATNorm systems on an 8 conver-

sation train, 1 conversation test NIST SRE 2005 task.

[2] P. Kenny and P. Dumouchel, “Experiments in speaker verification using

factor analysis likelihood ratios,” in Proc. Odyssey04, 2004, pp. 219–

226.

[3] W. M. Campbell, “Generalized linear discriminant sequence kernels for

speaker recognition,” in Proceedings of ICASSP, 2002, pp. 161–164.

[4] V. Wan and S. Renals, “SVMSVM: support vector machine speaker

verification methodology,” in Proceedings of ICASSP, 2003, pp. 221–

224.

[5] Alex Solomonoff, W. M. Campbell, and I. Boardman, “Advances in

channel compensation for SVM speaker recognition,” in Proceedings
of ICASSP, 2005.

[6] Nello Cristianini and John Shawe-Taylor, Support Vector Machines,

Cambridge University Press, Cambridge, 2000.

[7] Ronan Collobert and Samy Bengio, “SVMTorch: Support vector ma-

chines for large-scale regression problems,” Journal of Machine Learn-
ing Research, vol. 1, pp. 143–160, 2001.

[8] Pedro J. Moreno, Purdy P. Ho, and Nuno Vasconcelos, “A Kullback-

Leibler divergence based kernel for SVM classification in multimedia

applications,” in Adv. in Neural Inf. Proc. Systems 16, S. Thrun, L. Saul,

and B. Schölkopf, Eds. MIT Press, Cambridge, MA, 2004.

[9] Minh N. Do, “Fast approximation of Kullback-Leibler distance for

dependence trees and hidden Markov models,” IEEE Signal Processing
Letters, vol. 10, no. 4, pp. 115–118, 2003.
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