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ABSTRACT

This paper describes a method for determining the vocal tract
spectrum from articulatory movements using an hidden Markov
models (HMMs). In the proposed system, articulatory pa-
rameters are generated from a TTS system and converted to
acoustic features to be synthesized. Comparing with conven-
tional GMM-based systems, the proposed system has two ad-
ditional properties: 1) phonetic information given input texts
is available for the conversion, 2) the use of HMMs allows us
to utilize the temporal structure of speech. In this paper, we
investigate the optimal structure of HMMs for the conversion.
Experimental results show that using phonetic and temporal
information can improve the mapping accuracy in a spectral
distortion measure.

1. INTRODUCTION

Many attempts to synthesize speech based on speech produc-
tion mechanisms which are ignored in concatenative synthesis
have been studied for several decades. In these approaches,
the speech signal is generated from articulatory parameters
[1] by a mathematical production model in which speech is
characterized by the properties of the vocal apparatus instead
of the speech acoustics. Slowly varying articulatory param-
eters are better candidates of features for speech modeling.
Furthermore, the speech signal can be modified in an under-
standable way by manipulating articulatory parameters rather
than acoustic parameters such as vocal tract spectrum.

Figure 1 shows the proposed TTS system with articulatory
parameter conversion. First, F0 and articulatory parameters
are generated from the HMM-based TTS [2] which could be
easily constructed by using articulatory parameters as train-
ing data. Then, articulatory parameters are modified to re-
alize various speaking styles and they are converted to spec-
trum features, e.g., mel-cepstrum. Finally speech waveforms
are synthesized from converted parameters and F0 by using a
speech synthesis filter.

In the conversion system, the mapping between acous-
tic and articulatory features is statistically determined using
a parallel acoustic-articulatory speech database [3]. As a way
to implement the transformation function for converting ar-
ticulatory parameters to speech, the GMM-based system [4],
and the HMM-based system [5] have been proposed. How-
ever, a detailed comparison between these systems has not
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Fig. 1. TTS with articulatory parameter conversion

been performed. Comparing with the GMM-based system,
the proposed system has two additional properties: 1) pho-
netic information given input texts is available for the con-
version process, 2) the use of HMMs allows us to utilizes the
temporal structure of speech.

In this paper, we present a method for determining speech
acoustics from articulatory movements using multi-mixture
HMMs. We investigate the optimal structure of multi-mixture
HMMs with context clustering [6]. To vary the degree of us-
ing the phonetic information and temporal structure of HMMs,
we change the size of decision trees in context clustering, the
number of HMM states, and mixture components while keep-
ing the total number of model parameters fixed.

The rest of this paper is organized as follows. In the
following section, we introduce the MOCHA database. In
Section 3, the HMM-based speech conversion system is de-
scribed. The maximum likelihood spectral estimation using
dynamic features is applied to the HMM-based mapping in
Section 4, and speech synthesis with the estimated spectral
sequence is described in Section 5. Finally, we summarize
this paper in Section 6.

2. ACOUSTIC-ARTICULATORY SPEECH
DATABASE：MOCHA

The Multichannel articulatory database (MOCHA) [3] has been
released from the University of Edinburgh. It consists of speech
and some articulatory movements simultaneously recorded at
Queen Margaret University College.

We use electromagnetic articulograph (EMA) data, one of
representations of articulatory data provided in the MOCHA,
as an articulatory representation. The movements of seven
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articulators (top lip, bottom lip, bottom incisor, tongue tip,
tongue body, tongue dorsum, and velum) and two reference
points (the bridge of nose and the upper incisor) are sampled
in the midsagittal plane at 500 Hz.

3. CONVERSION SYSTEM OVERVIEW

In the HMM-based conversion system, we construct feature
vectors using parameters obtained from the parallel acoustic
and articulatory speech database. The feature vector consists
of mel-cepstral coefficients as spectral parameters, EMA data
as articulatory parameters, and their delta and delta-delta pa-
rameters. The joint probability densities of articulatory and
acoustic spectral parameters are modeled by the HMM using
these feature vectors.

In the training stage, first, monophone HMMs are esti-
mated by the isolated training and the following embedded
training. After converting to context dependent HMMs, they
are re-estimated by the embedded training. To avoid inaccu-
rate estimates caused by a limited amount of data, we apply
the tree-based context clustering technique [6].

In the conversion stage, first, the text to be synthesized
is converted to a context dependent label sequence. Then,
the sentence HMM is constructed by concatenating context
dependent HMMs according to the label sequence. Articula-
tory parameters are converted to spectrum features based on
the maximum likelihood estimation. Finally, a speech wave-
form is synthesized from the generated parameters by using a
speech synthesis filter.

4. TRAINING JOINT PROBABILITY
DISTRIBUTION WITH HMM

To convert the articulatory parameters to acoustic ones, the
joint probability densities over two features are trained using
the HMM. Each articulatory location is shown by x- and y-
coordinates, therefore articulatory movements are represented
as 14 dimensional vector sequence. Moreover, the proposed
system can represent probability densities more precisely us-
ing multi-mixture compared with the conventional HMM-based
system using single mixture [5]. Let Xt and Yt be articula-
tory and acoustic feature vectors, respectively. Let the vector
Zt =

[
X�t ,Y

�
t
]� be a joint feature of these two features, and

its vector sequence Z =
[
Z�1 , Z

�
2 , · · · , Z�T

]�
is modeled by the

HMM λ. The output probability of Z given the HMM can be
written as follows

p(Z | λ) =
∑
all q

∑
all m

⎡⎢⎢⎢⎢⎢⎣p(q | λ)p(m | q, λ)
T∏

t=1

p(Zt |mt, qt, λ)

⎤⎥⎥⎥⎥⎥⎦ (1)

where q = (q1, q2, · · · , qT ) is a state sequence of the HMM,
m = (m1,m2, · · · ,mT ) denotes a component number sequence
of mixture distributions. The probabilities p(q | λ) and
p(m | q, λ) denote a state transition probability and mixture
weights of output probability, respectively. In this paper, the
mixture component is assumed to be a Gaussian distribution:

p(Zt |mt = i, qt = j, λ) = N
(
Zt;µ

(Z)
i, j , Σ

(Z)
i, j

)
, (2)

µ(Z)
i, j =

⎡⎢⎢⎢⎢⎢⎣ µ(X)
i, j

µ(Y)
i, j

⎤⎥⎥⎥⎥⎥⎦ , Σ(Z)
i, j =

⎡⎢⎢⎢⎢⎢⎣ Σ(XX)
i, j Σ

(XY)
i, j

Σ
(YX)
i, j Σ

(YY)
i, j

⎤⎥⎥⎥⎥⎥⎦ , (3)

where µ and Σ denote a mean vector and a covariance matrix,
respectively. In the above-mentioned condition, the parame-
ters of the HMM λ is estimated via the EM algorithm.

4.1. Maximum likelihood spectral estimation

In the maximum likelihood (ML) spectral estimation, given

the articulatory features X =
[
X�1 , X

�
2 , · · · , X�T

]�
as an input,

the optimal spectral features Y =
[
Y�1 ,Y

�
2 , · · · ,Y�T

]�
is ob-

tained by maximizing the following conditional probability，

p(Y | X, λ) =
∑
all q

∑
all m

[
p (q | X, λ)

×p (m | q, X, λ)
T∏

t=1

p(Yt | Xt,mt, qt, λ)
]
, (4)

where the output probability distribution is written as follows:

p(Yt | Xt, qt = j,mt = i, λ) = N(Yt; Ei, j(t), Di, j) (5)

and

Ei, j(t) = µ(Y)
i, j + Σ

(YX)
i, j Σ

(XX)−1
i, j

(
Xt − µ(X)

i, j

)
, (6)

Di, j = Σ
(YY)
i, j − Σ(YX)

i, j Σ
(XX)−1
i, j Σ

(XY)
i, j . (7)

Furthermore, the posterior state transition probability p(q | X, λ)
and the mixture weight p(m | q, X, λ) is also calculated us-
ing articulatory parameters X and model parameters λ. Since
equation (4) includes hidden variables, the optimal sequence
of Y is estimated via the EM algorithm. The EM algorithm
is an iterative method for approximating the maximum like-
lihood estimation. It maximizes the expectation of the com-
plete data log-likelihood so called Q-function (auxiliary func-
tion):

Q(Y, Ŷ) =
∑
all q

∑
all m

[
p(m, q |Y, X, λ)log p(Ŷ,m, q | X, λ)

]
(8)

Taking the derivative of the Q-function, the spectral sequence
Ŷ which maximizes the Q-function is given by

Ŷ =
(
D−1
)−1

D−1E, (9)

where

D−1 = diag
[
D−11 , D

−1
2 , · · · , D−1T

]
, (10)

D−1t =

N∑
j=1

Mj∑
i=1

γi, j(t)D−1i, j , (11)

D−1E =
[
D−1E1

�
, D−1E2

�
, · · · , D−1ET

�]�
, (12)

D−1Et =

N∑
j=1

Mj∑
i=1

γi, j(t)D−1i, j Ei, j(t), (13)
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γi, j(t) = p (qt = j | X,Y, λ)
×p (mt = i | qt = j, X,Y, λ). (14)

The occupancy probability γi, j(t) can be calculated by the
forward-backward algorithm. Using the updated probabilities
γi, j(t), a new vector sequence Ŷ is calculated by equations (9),
and then Ŷ is substituted for Y. This procedure is iteratively
performed until a certain convergence condition is satisfied.

4.2. Maximum likelihood spectral estimation using
dynamic features

In this paper, we appropriately estimate the spectral feature
sequence using dynamic features as described [4, 5]. Let

Xt =
[
x�t ,∆x�t , ∆2x�t

]�
and Yt =

[
y�t ,∆y�t ,∆2y�t

]�
be an ar-

ticulatory feature and an acoustic feature, respectively. Where
xt and yt denote static features, and the notations, ∆ , ∆2 rep-
resent first and second order dynamic features, respectively,
calculated from the neighboring frames of time t. The rela-
tion between the static spectral sequence y =

[
y1
�, y2

�, · · ·
, yT

�]� and the static-dynamic features Y can be written as
the following linear transformation:

Y = Wy (15)

where W is a matrix which concatinates dynamic features to
the static feature sequence y. Under this relation, the static
feature vector sequence ŷ which maximizes equation (8) is
given by

ŷ =
(
W�D−1W

)−1
W�D−1E. (16)

Similarly to equation (9), the update is iterated until a certain
convergence condition is satisfied.

5. EXPERIMENT

5.1. Experimental conditions

We investigated the effectiveness of using phonetic and tem-
poral information by varying the importance of these proper-
ties. The acoustic-articulatory data described in Section 2 was
used. Experimental conditions are shown in Table 1.

To investigate the mapping accuracy of the HMMs, we
fixed the total number of parameters of HMMs, then assigned
them variously. Where the importance of temporal informa-
tion is represented by the state number of HMMs, and that of
phonetic information is represented by the size of decision-
tree in context clustering. In context clustering, a large single
tree including all triphone HMMs was constructed for each
temporal HMM state, which allows parameter sharing among
different phone HMMs. Furthermore, to assign the optimal
number of mixtures for each state (cluster), we apply the fol-
lowing procedure:

1. Construct a root node for all states of all HMMs.

2. Apply the questions which divide all temporal HMM
states.

Table 1. Experimental Condition
database MOCHA DATABASE

training sentences 414
evaluation sentences 46

acoustic data
sampling frequency 16kHz

shift length 5ms
frame length 25ms

window function Blackman window
analysis 24-order mel-cepstrum

articulatory data
tongue tip, tongue body

location tongue dorsum
(2-dimensional coordinate) top lip, bottom lip

bottom incisor, velum
sampling frequency 500Hz→ 200Hz

coordinate normalization mean=0, variance=1
statistical model left-to-right HMM

number of HMM states 1, 3, 5, 7, 9
total Gaussian distributions 64,128,256,512,768,1024

3. Perform the context clustering until the predetermined
number of clusters are generated.

4. Back off the tree in the reverse order of divisions until
the designed size of tree.

5. In the new leaf node obtained in 4, nodes of the sub tree
are used as the mixture components, and their weights
are determined by the occupancy count of the training
data.

The variance parameters of HMMs were trained as diagonal
covariances, and after the context clustering they were esti-
mated by the embedded training as full covariance matrices.

In Section 4.2, we presented the process which iteratively
estimates a spectral feature sequence and posterior probability
distributions of the state transition and the mixture compo-
nents. However, in this experiments we use the state align-
ment generated from the natural articulatory-acoustic data,
hence only the posterior probabilities of mixture components
were re-estimated, iteratively. In the experiment, F0 sequences
which automatically extracted from natural speech are used
for synthesizing speech to focus on the spectral conversion.

The mel-cepstral distortion between the target and the es-
timated mel-cepstrum given by the following equation was
used as the evaluation measure:

MelCD =
10

log 10

√√√
2

24∑
i=1

(
mc(t)

i − mc(e)
i

)2
(17)

where mc(t)
i and mc(e)

i denote the i-th coefficient of the target
and the estimated mel-cepstrum, respectively.

5.2. Experimental results

To investigate only the effectiveness of phonetic information,
we apply the context clustering to the GMM-based mapping.
Figure 2 shows the MelCD of the GMM-based mapping with
context clustering, which is equivalent to the multi-mixture
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Fig. 2. MelCD of the GMM-based mapping with context
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HMM-based mapping with the number of states is one, hence
temporal information could not be modeled. As the decision-
tree becomes large, phonetic information becomes positively
used, and the left end of the graph indicates the mapping with-
out using phonetic information, which is equivalent to the
conventional GMM-based method.

It is observed that the mapping accuracy without phonetic
information decreases in proportion to the decrease of the
number of mixtures. However, the mapping using phonetic
information (the tree size is around 64) achieved high accu-
racy even with fewer parameters. Furthermore, the result of
64 Gaussians with phonetic information is superior than the
conventional GMM mapping of 1024 Gaussians. These re-
sults show that phonetic information is useful for converting
articulatory features to acoustic ones.

We investigate the effectiveness of introducing temporal
information to the GMM-based mapping. Figure 3 shows the
MelCD of the multi-mixture HMM-based mapping, where
the total number of Gaussian distributions is fixed to 512. It
can be seen that the mapping accuracy can be improved by
using temporal information. However the use of too many
HMM states degrades the performance, which may be due to
inadequate state alignments. The tree sizes, which achieved
the highest accuracy in each number of HMM state tend to
increase with the increase of HMM states. It is supposed that,
independently of the number of HMM states, a similar num-
ber of clusters is required for each HMM state to represent its
context dependency. This result suggests that the simultane-
ous use of phonetic and temporal information is effective for
the conversion system.

6. CONCLUSION

In this paper, we examined an effectiveness of using phonetic
and temporal information for converting articulatory move-
ments to vocal tract spectrum. In the objective evaluation,
it was confirmed that mapping accuracy is improved by us-
ing both phonetic and temporal information. Future works
include investigating more effective contexts for articulatory-
acoustic conversion. Constructing a TTS system for synthe-
sizing articulatory features and listening tests are also future
works.
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