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ABSTRACT

In HMM-based speech synthesis, there are two issues critical 

related to the MLE-based HMM training: the inconsistency 

between training and synthesis, and the lack of mutual constraints 

between static and dynamic features. In this paper, we propose 

minimum generation error (MGE) based HMM training method to 

solve these two issues. In this method, an appropriate generation 

error is defined, and the HMM parameters are optimized by using 

the generalized probabilistic descent (GPD) algorithm, with the 

aims to minimize the generation errors. From the experimental 

results, the generation errors were reduced after the MGE-based 

HMM training, and the quality of synthetic speech is improved. 

1. INTRODUCTION 

The Hidden Markov Model (HMM) had been popularly used for 

speech recognition, and made a significant progress. In the last 

decade, the HMM has been applied for speech synthesis 

application [1][2][3], and HMM-based speech synthesis was 

proposed [4]. In this method, spectrum, pitch and duration are 

modeled simultaneously in a unified framework of HMMs [5], 

and the parameters are generated from HMMs by using the 

dynamic features [4]. In order to synthesize speech with various 

voice characteristics, the MLLR adaptation algorithm had been 

applied to transform HMM parameters with limited target speech 

data [6], e.g. 5 sentences. 

Although the current performance of HMM-based speech 

synthesis is quite good, there are two issues in the HMM training. 

The first issue is related to the inconsistency between the training 

and application of the HMM. In general, the aim of HMM-based 

speech synthesis is to generate the speech (acoustic parameters) as 

close to the nature speech as possible. However, the conventional 

HMM training method is adopted from speech recognition [7], 

which is based on Maximum Likelihood Estimation (MLE) 

criteria, i.e. it is not designed for speech synthesis application. 

Another issue is the ignorance of the constraints between static 

and dynamic features. Actually, after the feature extraction, the 

static and dynamic features are both used as the “static” features 

in HMM training, whereas the constraints between static and 

dynamic features are considered in parameter generation. 

In order to resolve above two issues, a trajectory model had 

been introduced into HMM-based speech synthesis [8][9], in 

which the HMM training is performed under the constraints 

between static and dynamic features. Although the new training 

criterion implied the minimization of the error between training 

and generated data, the HMM training is still under the MLE 

framework, which cannot actually resolve the first issue. 

In this paper, a new HMM training criterion, named Minimum 

Generation Error (MGE), was proposed to train the HMM. By 

incorporating the parameter generation into the training procedure, 

the inconsistency between training and generation was eliminated, 

and the constraints between static and dynamic features are 

considered in HMM training. With the definition of generation 

error between training and generated data, the Generalized 

Probabilistic Descent (GPD) algorithm [10] was applied for 

parameter updating with the aim to minimize the generation error. 

This paper is organized as follows. In Section 2, we briefly 

review the HMM-based speech synthesis framework and the 

parameter generation algorithm. In Section 3, we present the 

MGE-based HMM training method in detail, including the 

definition of generation error and the parameters updating 

schedule. Next, the experiments to evaluate the performance of 

the MGE-based HMM training are shown in Section 4. Finally, 

our conclusion and future work is given in Section 5. 
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Fig. 1 HMM-based speech synthesis system 

2. HMM-BASED SPEECH SYNTHEISIS SYSTEM 

Figure 1 shows an overview of the HMM-based speech synthesis 

system, which consists of two stages, the training and synthesis 

stage. 

In the training stage, the output vector of the HMM consists of 

spectrum part and F0 part. In our system, the spectrum part 

consists of Line Spectral Pair (LSP), their delta and delta-delta 

coefficients. The F0 part consists of a logarithm of F0, its delta 

and delta-delta coefficients. The spectrum part is modeled by 

continuous distribution HMMs and the F0 part is modeled by 

multi-space probability distribution HMMs [11]. In order to 

capture the variations caused by different contextual features, the 

contextual dependent HMM are used, and the tree-based 

clustering technique is applied for spectrum, F0 and duration to 

improve the robustness. 
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In the synthesis stage, the input text is firstly converted to a 

context-dependent label sequence, and the decision trees 

generated in the training stage are used to choose the appropriate 

clustered state HMMs for each label. Then the parameter 

generation algorithm is used to generate the acoustic parameter 

sequence, including spectrum and F0. Finally, the speech is 

synthesized from the generated spectrum and F0 data using the 

STRAIGHT filter. 

3. MINIMUM GENERATION ERROR TRAINING 

In this section, we first review the parameter generation algorithm 

[4], and then introduce the Minimum Generation Error (MGE) 

based HMM training method with a generation error definition. In 

this method, the parameter generation is incorporated into the 

HMM training procedure for generation error calculation, and the 

parameters of the HMMs are optimized to minimize the 

generation error by using the GPD algorithm. 

3.1. Parameter generation algorithm 

For a given HMM  and the state sequence Q , the parameter 

generation is to determine the speech parameter vector sequence 

1 2  to maximize P O . In order to keep 

the smooth property of the generated parameter sequence, the 

dynamic features including delta and delta-delta coefficients are 

used, which are calculated as 
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M  is the dimension of speech parameter vector .tc
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are the mean and covariance matrix, respectively. 

3.2. Generation error definition 

In general, the aim of HMM-based speech synthesis is to generate 

the speech (acoustic parameters) as close to the nature speech as 

possible, i.e. the generation error is as small as possible. From this 

point, the first important thing is to define an appropriate 

objective measure for generation error. 

For a state sequence Q  of a given speech parameter vector 

sequence O W , the generated vector sequence  can 

be calculated by equation 

C= ( , )C Q

(9). We assume the distance between 

original and generated data as . Without loss of 

generality, we denote  as C . Here the Euclidean distance 

was adopted to calculate , i.e.
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It should be noted that the distance measure can be replaced by 

other measure which is more suitable for the real application. The 

following equations can be reformulated accordingly. 

The posterior probability  can be used to “weight” 

the generation error of C  to define a corresponding lose function 

for all possible paths Q :
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If we directly calculate the generation error using equation (13),

the computational cost is excessive large. In practice, we can use 

the representative N-best path to calculate the generation error, 

and equation (13) can be rewritten as 
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where is the constant number for normalization. For 

simplification, here we only used the optimal state sequence (1-

best path) obtained by the Viterbi algorithm. Then the definition 

of generation error can be simplified as 

K
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where  is the optimal state sequence for O .optQ

3.3. Minimum generation error criterion 

Under the definition of generation error, we incorporated the 

parameter generation into the HMM training procedure for 

generation error calculation. In order to minimize the generation 

errors, the GPD algorithm is applied and shown below in detail. 

This new training method, aiming at minimizing the generation 

error, is called Minimum Generation Error (MGE) based HMM 

training.

For the given definition of generation error , the GPD 

algorithm is to minimize the empirical generation error 

( , )C

1

1
( ) ( , ) ( , ) ( )

N

i N

i

L C C p
N
=

= = C dC  (16) 

according to an iterative procedure 
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A more detailed introduction and discussion of GPD algorithm 

can be found in the literature [10]. 

For a sample  in the training set, the updating rule of the 

HMM parameters is 
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( )
( ; )

( 1) ( ) n
n

C
n n =+ = n . (19) 

Under the definition of generation error in equation (15), we 

obtain

( )
( , )

2
C

C C=
C

 (20) 

From equation (9), the generated vector sequence is written as 
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For the mean parameter , i.e. the ,i j j th dimension of the 

mean vector of the state model related to the i th frame, equation 

(20) can be written as 
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where . Finally, the updating rule 

for the mean vector is 
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where . Finally, the 

updating rule for the covariance parameter is 

[0,...,0,1 ,0,0,...0]v i M jZ diag Z Z× += =

( ) ( )1
, ,( 1) ( ) 2i j i j n vv n v n C C R W Z WC+ =

)

O T MB

. (27) 

3.5. Discussion 

As a probability measure, the HMM generally has some original 

constraints, e.g. . In order to maintain the constraints and 

normalize the step size during parameter updating, we should take 

some parameter transformations as follows: 

0>
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The similar updating rules can be formulated correspondingly. 

It should be noted that the computational cost of the MGE-

based training, in which the most computation cost is associated 

to the calculation of  in equation 1R (25) and (27). To calculate 

 directly, we need , and it becomes 

when  are diagonal. If we consider that R  is a quasi-diagonal 

matrix,  can also be approximated to a quasi-diagonal matrix 

with a diagonal bandwidth B , which can be regarded as the 

influence range of the current state. Usually, 50 ~ 100 is large 

enough for B . Finally, the computational complexity reduces to 

, which is acceptable as the HMM training is an offline 

task.
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As we have indicated, there are two issues related to the 

conventional HMM training, including the inconsistency between 

the training and application of the HMM and the ignorance of the 

constraints between static and dynamic features. In the MGE-

based HMM training, these two issues are both resolved. By using 

the minimum generation error criterion, the HMM training aims to 

minimize the generation error, where the inconsistency between 

the training and application of the HMM is eliminated. 

Furthermore, as the constraints between static and dynamic 

features are considered in the parameter generation, they are also 

considered in the HMM training by incorporating the parameter 

generation into the training procedure. 

4. EXPERIMENTS 

4.1. Experimental conditions 

The training data consists of 1000 phonetically balanced Chinese 

sentences, including 25,096 initials and 29,942 finals. The test 

data consists of 800 sentences, including 17,860 initials and 

21,389 finals. Regarding to the Chinese characteristics, the 

context feature and question set were designed for contextual 

HMM modeling and tree-based clustering. 

Speech signal were sampled at a rate of 16KHz. The acoustic 

features, including F0 and 24-order LSP coefficients, were 

obtained by STRAIGHT [12] filter with a 5ms shift. Feature 

vector consists of F0 and spectrum parameter vector. Spectrum 

parameter vector consists of 25 LSP coefficients with the gain, 

delta and delta-delta coefficients. F0 parameter vector consists of 

a logarithm of F0, its delta and delta-delta coefficients. The 5-

state left-to-right with no skip HMM structure was used.

We evaluate the effect of MGE-based training by comparing 

the performance of the HMMs trained by MLE and MGE 

criterion. The MGE-based training is performed as follows: 

a. Firstly, the HMMs were initialized by the results of MLE-

based training, and the optimal state path for all data were 

obtained by the Viterbi algorithm and fixed in the later 

processes. 

b. For each training data, the generation errors were 

calculated and the related HMM parameters were updated 

using equation (25) and (27).

c. The procedure (b) were performed by several iterations 

until the generation errors are converged. 

It should be noted that the clustered HMMs are used to initialize 

the HMMs for MGE-based training, i.e. the MGE criterion are 

only applied to the clustered HMM training. Furthermore, only 

spectrum parameters are updated in current training procedure. In 

future work, F0 parameters will be updated, and we will apply the 

MGE criterion to the context-dependent HMM training. 

4.2. Experimental results 

As the covariance matrix is diagonal, the generation errors were 

calculated independently for each dimension of LSP coefficients. 

Figure 2 shows convergence property of MGE-based HMM 

training for several representative dimensions. From the results of 

close and open test, the MGE-based HMM training are converged 
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after 10~20 iterations. In the open test, the generation errors 

reduced about 8~15% for different dimensions of LSP coefficient 

after the MGE-based HMM training. 

From the informal perception experiment, the synthetic speech 

becomes clearer and the unnaturalness is alleviated after the 

MGE-based HMM training. To evaluate the effectiveness of the 

MGE-based HMM training, formal subjective listening test was 

conducted. We compared the quality of synthetic speech 

generated from the HMMs trained with MLE and MGE criterion. 

In the tests, 50 test sentences, which were not contained in the 

training data, were synthesized from the HMMs trained by MLE 

and MGE criterion, respectively. Subjects, including 6 persons, 

were presented a pair of synthesized speech from different models 

in random order, and asked which speech sound more natural. 

Figure 3 shows the preference scores. It can be seen that the 

quality of synthetic speech are improved after applying the MGE-

based HMM training.

5. CONCLUSION & FUTRUE WORK 

In this paper, we proposed minimum generation error (MGE) 

based HMM training method for HMM-based speech synthesis. In 

this method, an appropriate generation error is defined, and the 

HMM parameters are optimized by using the GPD algorithm, with 

the aims to minimize the generation errors. In the MGE-based 

HMM training, two issues in the MLE-based HMM training, 

including the inconsistency between the training and application 

of the HMM and the ignorance of the constraints between static 

and dynamic features, had been resolved. From the experimental 

results, the generation errors were reduced after the MGE-based 

HMM training, and the quality of synthetic speech are improved. 

Future work is to apply the MGE criterion to MSD-HMM for 

F0 parameter updating. Furthermore, we will apply it to the 

contextual dependent HMM training, and design a similar 

criterion for the tree-based clustering.
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