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ABSTRACT

In HMM-based speech synthesis, we have to choose the modeling
strategy for speech synthesis units depending on the amount of avail-
able speech data to generate synthetic speech of better quality. In
general, speaker-dependent modeling is an ideal choice for a large
speech data, whereas speaker adaptation with average voice model
becomes promising when available speech data of a target speaker is
limited. This paper describes several speaker adaptation algorithms
and MAP modification to develop consistent method for synthesiz-
ing speech in a unified way for arbitrary amount of the speech data.
We incorporate these adaptation algorithms into our HSMM-based
speech synthesis system and show its effectiveness from results of
several evaluation tests.

1. INTRODUCTION

In HMM-based speech synthesis, it is necessary to choose the mod-
eling strategy for speech synthesis unit depending on the amount of
available speech data to generate synthetic speech of better quality.
In general, speaker-dependent modeling is an ideal choice for a large
speech data of a target speaker, whereas speaker adaptation with av-
erage voice model [1] becomes promising when available speech
data of the target speaker is limited. In this method, spectrum, fun-
damental frequency (F0), and duration of several training speakers
are modeled simultaneously in a framework of HMM, and average
voice model, which models average voice and prosodic character-
istics of the training speakers, is trained by using adaptive training
for the speaker normalization [1][2]. Then, using a speaker adapta-
tion algorithm such as MLLR adaptation, the average voice model is
adapted to a new target speaker based on speech data uttered by the
target speaker. After the speaker adaptation, speech is synthesized
in the same manner as speaker-dependent speech synthesis method
[3][4]. The average voice model can utilize a large variety of con-
textual information included in the several speakers’ speech corpus
as a priori information for the speaker adaptation and provide ro-
bust basis useful for synthesizing speech of the new target speaker.
As a result, stable synthetic speech can be obtained even if speech
samples available for the target speaker are very small.

In this study, we explore and compare several speaker adapta-
tion algorithms to transform the average voice model into the target
speaker’s model when the adaptation data for the target speaker is
limited. Furthermore, we adopt “ex-post” MAP (Maximum A Pos-
teriori) estimation to upgrade the estimation for the distributions hav-
ing sufficient amount of speech samples. When sufficient amount of
the adaptation data is available, the ex-post MAP estimation theoreti-
cally matches the ML estimation which is used for the training of the
speaker dependent model. As a result, it is thought that we do not

need to choose the modeling strategy depending on the amount of
speech data and we would accomplish the consistent method to syn-
thesize speech in the unified way for arbitrary amount of the speech
data. We incorporate these adaptation algorithms into our speech
synthesis system and show its effectiveness from results of subjec-
tive and objective evaluation tests.

2. SPEAKER ADAPTATION BASED ON HSMM

In speaker adaptation for speech synthesis, it is desirable to con-
vert both voice characteristics and prosodic features such as F0 and
phone duration. Therefore, we use a framework of hidden semi-
Markov model (HSMM) [5] which is an HMM having explicit state
duration distributions instead of the transition probabilities for di-
rectly modeling and controlling phone durations. An N -state left-to-
right HSMM without skip path λ is specified by state output proba-
bility distribution {bi(·)}N

i=1 corresponding to spectrum and F0, and
state duration probability distribution {pi(·)}N

i=1 corresponding to
phone duration. In this study, we assume that the i-th state output
and duration distributions are Gaussian distributions characterized
by mean vector µi and diagonal covariance matrix Σi, and mean
mi and variance σ2

i , respectively,

bi(o) = N (o; µi,Σi) (1)

pi(d) = N (d; mi, σ
2
i ) (2)

where o is the observation data and d is the time staying in the state
i. Using the framework of the hidden semi-Markov model, we can
derive speaker adaptation to simultaneously transform state output
and duration distributions. In the next sections, we briefly present
the several speaker adaptation algorithms based on the HSMM-based
framework.

3. SPEAKER ADAPTATION USING BIAS VECTOR

We firstly describe several simple adaptation algorithms estimating
the difference (bias) between the target speaker and the average voice
model. In the adaptation algorithms, mean vectors of the state output
and duration distributions for the speaker are obtained by adding the
bias vector to mean vector of the average voice model,

bi(o) = N (o; µi + ε,Σi) (3)

pi(d) = N (d; mi + ν, σ2
i ), (4)

where ε and ν are the bias vectors for state output and duration dis-
tributions, respectively. SBR (Signal Bias Removal) [6] estimates a
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global bias vector for all distributions. In contrast, AMCC (Auto-
matic Model Complexity Control) [7] estimates several bias vectors.
Each bias vector is estimated for a cluster of distributions defined by
tree structure of distributions. The number of bias vectors is con-
trolled based on heuristic threshold or information criterion such as
MDL. Furthermore, SMAP (Structural Maximum A Posteriori) [8]
takes advantage of the tree structure and estimates bias vector for
each distribution. In the SMAP adaptation, the bias vector for each
node of tree structure is estimated based on maximum a posteriori
criterion where bias vector estimated for parent node of the current
node is used as a parameter of prior distribution. Recursively calcu-
lating the MAP estimation from the root node to leaf nodes of the
tree structure of distributions, we finally obtain an individual bias
vector for each distribution.

4. SPEAKER ADAPTATION USING LINEAR REGRESSION

4.1. Maximum Likelihood Linear Regression

Next, we describe several adaptation algorithms in which several
linear regression functions are estimated to transform the average
voice model into target speaker model. Here we pick up the follow-
ing four kinds of linear regression algorithms – MLLR (Maximum
Likelihood Linear Regression) [9], multiple linear regression [10],
CMLLR (Constrained MLLR) [11], and SMAPLR (Structural Max-
imum A Posteriori Linear Regression) [12].

In MLLR adaptation, which is the most popular linear regression
adaptation, mean vectors of state output and duration distributions
for the speaker are obtained by linearly transforming mean vector of
state output and duration distributions of the average voice model,

bi(o) = N (o; ζµi + ε,Σi) (5)

pi(d) = N (d; χmi + ν, σ2
i ) (6)

where W = [ζ, ε] and X = [χ, ν] are transformation matri-
ces which transform average voice model into the target speaker
for state output and duration distributions, respectively. Although
the MLLR adaptation needs more parameters for the transformation
compared to bias vector only, the MLLR adaptation theoretically in-
cludes the speaker adaptation using the bias vector and we can expect
more appropriate transformation when the available adaptation data
is enough for the number of the parameters.

4.2. Maximum Likelihood Multiple Linear Regression

In the MLLR adaptation, mean vectors for the target speakers are
estimated by a simple linear regression using a single average voice
model. We can extend the simple linear regression to multiple linear
regression using several average voice models,

bi(o) = N (o;
∑F

f=1 ζ(f)µ
(f)
i + ε,Σi) (7)

pi(d) = N (d;
∑F

f=1 χ(f)m
(f)
i + ν, σ2

i ) (8)

where F is the number of average voice models and µ
(f)
i and m

(f)
i

are the mean vectors of the f -th average voice model. This algo-
rithm, called ESAT [10], automatically selects or blends several typ-
ical average voice models depending on speaker characteristics of
the target speaker. As a result, the ESAT would widely expand the
range of the target speaker of the speaker adaptation compared to a
single average voice model. However, the ESAT adaptation needs F
times as many parameters as the MLLR adaptation needs. Hence, if
the adaptation data is not enough for the number of parameters, the
accuracy of transformation matrices decreases.

4.3. Constrained Maximum Likelihood Linear Regression

The transformed parameters of the speaker adaptations described
above are limited to the mean vectors of the average voice model.
However, we should tune covariance matrices simultaneously to a
new speaker if the variation is one of the important factor such as
F0. In CMLLR adaptation, mean vectors and covariance matrices of
state output and duration distributions for the target speaker are ob-
tained by transforming the parameters at the same time as follows:

bi(o) = N (o; ζµi − ε, ζΣiζ
�) (9)

pi(d) = N (d; χmi − ν, χσ2
i χ). (10)

This adaptation algorithm tunes not only mean values but also the
range of the variation to a new speaker. Because the range of the
variation is one of the important factors for F0, this algorithm would
conduct more appropriate adaptation of prosodic information.

4.4. Structural Maximum A Posteriori Linear Regression

The linear regression adaptation algorithms described above can also
estimate several transformation matrices based on tree structure of
the distributions. The number and the tying topology of transfor-
mation matrices suitable for the amount of the adaptation data is
automatically decided based on the tree structure. Because prosodic
feature is characterized by many suprasegmental features, we utilize
context decision trees whose questions are related to the supraseg-
mental features, such as mora, accentual phrase, part of speech,
breath group, and sentence information to determine the tying topol-
ogy for the transformation matrices.

In SMAPLR adaptation, the concept of SMAP adaptation is ap-
plied to the estimation of the transformation matrices of the MLLR,
that is, the recursive MAP-based estimation of the transformation
matrices from the root node to lower nodes is conducted. As a re-
sult, we can make better use of the structural information and the
suprasegmental information which the context decision trees have.

5. MAXIMUM A POSTERIORI MODIFICATION

Furthermore, we adopt “ex-post” MAP (Maximum A Posteriori) es-
timation [13]. In the previous speaker adaptation using linear re-
gression, there is a rough assumption that the target speaker model
would be expressed by the linear regression of the average voice
model. Therefore, by applying the MAP estimation to the model
transformed by the linear regression additionally, we can modify and
upgrade the estimation for the distribution having sufficient amount
of speech samples. When sufficient amount of the adaptation data is
available, the ex-post MAP estimation theoretically matches the ML
estimation which is used for the training of the speaker dependent
model. As a result, it is thought that we do not need to choose the
modeling strategy depending on the amount of available speech data
and we would accomplish the consistent speech synthesis method
for synthesizing speech in the unified way for arbitrary amount of
the speech data.

6. EXPERIMENTS

6.1. Experimental Conditions

To compare and verify the effectiveness of each speaker adaptation
algorithm, we conducted several objective and subjective evaluation
tests for the synthetic speech using each speaker adaptation algo-
rithm. Speech database for the following experiments contains 7

I  78



R
M

S
E

 o
f l

og
F

0[
ce

nt
]

 260

 262

 264

 266

 268

 270

 272

 274

 276

 0  20  40  60  80  100
Number of Sentences

SBR

AMCC

SMAP

 0  20  40  60  80  100

ESAT

CMLLR

SMAPLR
MLLR

 0  20  40  60  80  100

SMAP

SMAPLR

SMAPLR+MAP

 4.8

 5

 5.2

 5.4

 5.6

 5.8

 6
M

el
-C

ep
 D

is
ta

nc
e[

dB
]

SBR

AMCC
SMAP

ESAT

MLLR

SMAPLR

CMLLR

SMAP

SMAPLR

SMAPLR+MAP

Number of Sentences Number of Sentences

Bias Vector Method Linear Regression Method SMAP-based Method

Fig. 1. Objective evaluation of speaker adaptation algorithms.

male and 5 female speakers’ speech samples. Each speaker uttered
a set of 503 phonetically balanced sentences taken from the ATR
Japanese speech database. We chose 4 males and 4 females as train-
ing speakers for the average voice model, and used the rest of 3
males and 1 female as target speakers of the speaker adaptation. In
the modeling of synthesis units, we used 42 phonemes, including
silence and pause and took the phonetic and linguistic contexts [1]
into account.

Speech signals were sampled at a rate of 16kHz and windowed
by a 25ms Blackman window with a 5ms shift. The feature vectors
consisted of 25 mel-cepstral coefficients including the zeroth coef-
ficient, logarithm of F0, and their delta and delta-delta coefficients.
We used 5-state left-to-right HSMMs without skip path. The gender-
dependent and independent average voice models were separately
trained using 1800 and 3600 sentences, respectively, 450 sentences
for each training speaker. In the training stage of the average voice
models, shared-decision-tree-based context clustering algorithm and
speaker adaptive training [1][2] were applied to normalize influence
of speaker differences among the training speakers and train appro-
priate average voice models. Note that all the average voice models
have the same topology and the number of distributions based on the
shared-decision-trees.

We then adapted the average voice model to the target speaker
using adaptation data whose sentences were included in the train-
ing sentences. In all the adaptation algorithms except SBR, multi-
ple transformation parameters were estimated based on the shared-
decision-trees constructed in the training stage of the average voice
models. The tuning parameters for each adaptation algorithm, the
thresholds to control the number of transformation parameters and
hyper-parameters of the MAP estimation, were determined based
on preliminary objective experimental results. The average voice
model used as an initial model were also determined based on the
preliminary objective experimental results. The gender-dependent
average voice models were used for 2 male and 1 female speakers
and gender-independent average voice model was used for the rest
of a male speaker. ESAT adaptation used both the gender-dependent
and gender-independent average voice models as the initial models.

6.2. Objective Evaluations of Speaker Adaptation Algorithms

Firstly, we calculated the target speakers’ average mel-cepstral dis-
tance and root-mean-square (RMS) error of logarithmic F0 as the ob-
jective evaluations for each speaker adaptation algorithm. The num-
ber of the adaptation sentences ranged from three to a hundred. Fifty
test sentences were used for evaluation, which were included in nei-
ther training nor adaptation data. For the distance calculation, state
duration of each model was adjusted after Viterbi alignment with the
target speaker’s real utterance. Figure 1 shows the target speakers’
average mel-cepstral distance between spectra generated from each
model and obtained by means of analyzing target speaker’s real ut-
terance, and the RMS logarithmic F0 error between generated loga-
rithmic F0 and that extracted from target speaker’s real utterance. In
the distance calculation, silence and pause regions were eliminated.
And since F0 value is not observed in the unvoiced region, the RMS
logarithmic F0 error was calculated in the region where both gen-
erated F0 and real F0 were voiced. From this figure, it can be seen
that making better use of the structural information and the supraseg-
mental information which the context decision trees have based on
the SMAP concept and estimating multiple transformation param-
eters provides better synthetic speech similar to the target speaker.
And we can see that CMLLR adaptation to tune both mean and vari-
ance, and MAP modification to upgrade the estimation accuracy also
have a beneficial effect on the improvements of F0 even for the case
where the adaptation data is small.

Figure 2 shows the average mel-cepstral distance and the RMS
logarithmic F0 error of the synthetic speech using the speaker adap-
tation algorithms (SMAPLR and MAP Modification) and speaker
dependent (SD) algorithms [4]. The maximum number of sentences
for the target speaker was 450 sentences. From this figure, we can
see that the speaker adaptation algorithm significantly outperforms
the speaker dependent model when the adaptation data is relatively
limited, and furthermore, when relatively sufficient amount of the
adaptation data is available, the error of synthetic speech using the
speaker adaptation algorithms converges in the error similar to that
using the speaker dependent model. Note that the model topology
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Fig. 2. Objective evaluation of speaker adaptation algorithm and
speaker dependent algorithms.

of the average voice model defined by the decision tree is not the
same as the speaker dependent model, and the adaptation data in-
cludes more or less voice-quality variation. As a result, the speaker
adaptation performance does not converge to the speaker-dependent
performance.

6.3. Subjective Evaluation of Speaker Adaptation Method and
Speaker Dependent Method

We then conducted a Comparison Category Rating (CCR) test to
evaluate voice characteristics and prosodic features of synthesized
speech using SMAPLR adaptation, the SMAPLR adaptation and
the MAP Modification (SMAPLR+MAP), and speaker dependent
model (SD). Seven subjects were first presented reference speech
and then synthesized speech samples generated from the models in
random order. The subjects were then asked to rate their voice char-
acteristics and prosodic features comparing to those of the reference
speech. The reference speech was synthesized by a mel-cepstral
vocoder. The rating was done using a 5-point scale, that is, 5 for very
similar, 4 for similar, 3 for slightly similar, 2 for dissimilar, and 1 for
very dissimilar. For each subject, five test sentences were randomly
chosen from 50 test sentences, which were contained in neither train-
ing nor adaptation data. Figure 3 shows the results of the CCR test.
A confidence interval of 95 % is also shown in the figure. These
results confirm again that synthesized speech of the speaker adap-
tation algorithm (SMAPLR+MAP) significantly outperforms that of
the speaker dependent model when the adaptation data is relatively
limited, and furthermore, when relatively sufficient amount of the
adaptation data is available, both synthetic speech have almost the
same score.

7. CONCLUSIONS

This paper has described several HSMM-based speaker adaptation
algorithms and MAP modification algorithm to develop consistent
method for synthesizing speech in a unified way for arbitrary amount
of the speech data. From the results of subjective and objective eval-
uation tests, we have evaluated and shown the advantages of the
speaker adaptation algorithms and MAP modification. Our future
work is integration of SMAPLR and CMLLR adaptation.

1

2

3

4

5

45030020010050
Number of Sentences

SD

SMAPLR+MAP
SMAPLR

Fig. 3. Subjective evaluation of speaker adaptation algorithm and
speaker dependent algorithms.
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