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Abstract 

In this paper we explore the merging of data from various 
speakers in building a concatenative text-to-speech system. 
First, we investigate the pooling of data from multiple 
speakers for building statistical models to predict pitch and 
duration, and present listening test results which show  that 
the expressiveness of our TTS system is improved using these 
techniques. Additionally, we describe an experiment in which 
we merged databases from several speakers to form an 
enlarged database from which our concatenative text-to-
speech system draws segments. We present listening test 
results which show that pooling data from several speakers 
yields higher quality synthetic speech in general domains than 
restricting ourselves to the data from just one speaker in our 
repertoire.  

1. Introduction  

The quality of concatenative text-to-speech (TTS) systems 
has increased dramatically over the past several years. The 
improvements have come both from algorithms, such as those 
described in Hamza [1], Kim [2], and Eide [3], and also from 
using improved datasets from which the segments are drawn. 
Empirical observations have shown that systems drawing 
from high-quality studio recordings of professional speakers 
far surpass systems using “in-house” recordings spoken by, 
for example, speech researchers.  

Professional speakers tend to have pitch ranges which are far 
larger than ordinary speakers; for that reason, large datasets 
are needed in order to provide a sufficiently rich set of 
prosodic choices for each context.  Unfortunately, though, 
collecting large datasets from professional speakers in a 
studio can be costly.  Apart from monetary concerns, the 
ability to incorporate data from new speakers in an existing 
TTS system has appeal, because recording new material from 
an existing voice eventually becomes impossible once the 
speaker is no longer available. 

In this paper we consider ways to pool data from several 
professional speakers together to form a larger dataset than is 
available for any one of the speakers individually. The 
flexibility of biasing the output towards any of the voices in 
the combined dataset allows us to offer several distinct voices 
using the pooled-data approach.  

There is an inherent trade-off between having more data 
available and having those data come from several speakers, 
thus potentially blurring any speaker-specific peculiarities we 

may wish to preserve. This paper attempts to identify 
conditions under which that trade-off favors pooling.   
Towards that end, we choose a priori one of the speakers as 
the “target” speaker, and label the remaining speakers as 
“auxiliary” speakers. The pooled-speaker system will have as 
its goal producing high-quality synthetic speech which sounds  
like the target speaker through judicious use of data from that 
speaker as well as from the auxiliary speakers. 

In Section 2, we consider pooling data for prosody modeling. 
The IBM Expressive Text-to-Speech System [4],[1] uses a 
decision tree for predicting pitch contours for each syllable to 
be synthesized, and a separate decision tree for predicting 
durations for each phone to be synthesized. When pooling 
data for prosody modeling, we do not normalize the 
observations used to train the duration model, as all of the 
speakers in the combined dataset spoke at roughly the same 
speaking rate. By contrast, we do normalize the pitch 
observations from each of the training speakers as described 
in Section 2.1 before building pitch models from the 
combined normalized data.   

At runtime, the target-speaker-specific parameters are used to 
calculate speaker-specific pitch contours from the speaker-
independent pitch models.  We show in Section 4.1 that 
pooling data for training prosody models significantly 
improves the expressiveness of our system. 

In Section 3 we consider pooling segments to form a large 
database from which the TTS engine may draw. This a bit 
trickier than pooling data for prosody models, because the 
normalization step is less straight-forward.  In the case of an 
auxiliary speaker whose voice sounds relatively close to the 
target speaker, no normalization may be needed. However, in 
general, speaker-identifying characteristics such as pitch and 
spectral envelope need to be adjusted to bring the auxiliary 
speaker close to the target speaker.  Ultimately we would like 
to use state-of-the-art voice morphing techniques such as 
those described in Kawahara [5], Kain [6], and Ye and Young 
[7]. However, voice morphing is not the focus of this paper; 
in order to make our diverse voices more homogeneous we 
simply used a shift in the average pitch to bring the auxiliary 
speakers' pitch to that of the target speaker. Even using this 
simplistic approach we have observed a tendency for listeners 
to prefer a system drawing from the pooled data of 3 speakers 
to a system drawing from the single-speaker dataset on 
general-domain sentences, as discussed in Section 4.2.  We 
expect the pooled-data approach to further outperform the 
single-speaker approach as the quality of our voice 
conversion increases. 
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2.  Pooled-speaker prosody models 

In this section we describe pooling data from several speakers 
to build pitch and duration models. We expect this approach 
to be especially advantageous in situations where relatively 
little data is available from the target speaker for building 
prosody models.  One example of such a case is in our 
expressive speech synthesis system in which we collect a 
relatively small amount of data in each of a set of expressive 
styles and build prosody models separately for each style. In 
this paper we pool the data representing the “conveying good 
news” style from 3 speakers, 1 female target speaker and 1 
female and 1 male auxiliary speaker, to build a pooled “good 
news” prosody model.  The training of the model to predict 
pitch is described further in Section 2.1, and the training of 
the model to predict durations is mentioned in Section 2.2. 

All speakers had originally read essentially the same script. 
Thus, we had three times the amount of data available than 
would be available for speaker-specific models, but the 
number of observed contexts was essentially unchanged. 

We show in Section 4.1 that, at least in the case of conveying 
good news, listeners prefer the output of the TTS system 
using the pooled model to that of the system using a model 
built only from the target speaker's data. We expect that trend 
to persist, independent of the particular expressive style being 
examined.  We further expect the trend to persist for the 
neutral case, but perhaps to a smaller degree given that we 
have roughly eight times the amount of data for the neutral 
style than is available for any of the other expressive styles. 

2.1. Pooled-speaker pitch models  

The form of the pitch model remains unchanged from our 
speaker-specific system. We use a decision tree with features 
derived from the text such as lexical stress, distances from 
phrase boundaries, etc. We predict one target pitch vector per 
syllable. The target pitch vector specifies the desired pitch at 
three points, corresponding to the beginning, middle, and end 
of the syllable's sonorant region. Although the form of the 
pitch model is the same in the pooled-speaker and the 
speaker-specific systems, the observation in each of these 
cases is different. Rather than modeling the pitch (in the log 
domain) as before, in the speaker-pooled model we subtract 
from the pitch the mean of the pitch for the speaker from 
whom the observation came. Finally, we divide by the 
standard deviation of the pitch for that speaker. Thus, our 
normalized observation is   (p-µi ) /σi  where p is the log pitch, 
µi is the mean of the log pitch for speaker i, and σi is the 
standard deviation of the log pitch for speaker i.

The new, pooled-speaker decision tree for estimating pitch 
has approximately 500 leaves, whereas each speaker-specific 
tree has around 200 leaves.  The mean of the normalized 
observations mapping to leaf j form the prediction vector xj

for that leaf. 

At run-time, features are assembled as usual from the text and 
dropped down the pooled-speaker decision tree. The 
prediction vector of the appropriate leaf, xn, is then un-
normalized using the target-speaker's pitch parameters, σT and 
µT, to form the pitch target values for that syllable. The ith

component of the target vector for a given syllable is given 
by: 

                             pi = xn i σT  +  µT

for i={0,1,2}, corresponding to the pitch at the beginning, 
middle, and end of the sonorant region of the syllable. 

2.2. Pooled-speaker duration models  

All of the professional speakers who contributed data to the 
speaker-pooled prosody models spoke at roughly the same 
speaking rate. Thus, in this experiment we did not need to 
normalize the duration observations before pooling them. 
However, had we incorporated data spoken at a substantially 
different rate, we could normalize the durations by dividing 
by the speaking rate, pool, and then un-normalize at run-time 
by multiplying the observation by the target speaking rate. 

The decision tree for predicting durations from pooled data 
has approximately 1300 leaves whereas the decision tree for 
predicting durations from speaker-specific data typically has 
about 900 leaves. 

3. Pooled datasets for segment selection 

Pooling segments from several speakers in order to form an 
enlarged dataset for concatenative TTS potentially requires 
some signal processing to unify originally different pitch and 
formant ranges. In our experiment, we pooled three 
professional female speakers, one of whom we identified a
priori as the target voice. The average pitch of the target 
voice was 226 Hertz.  One of the auxiliary female speakers' 
pitch and formant positions were fairly similar to the target 
speaker; we added the segments from this speaker to the 
pooled database without processing.  The third speaker had an 
average pitch of 168 Hertz, markedly lower than that of the 
target speaker.  

As the focus of this paper is on pooling data from various 
speakers for concatenative TTS rather than on the details of 
voice morphing, we chose a commercially-available third 
party software [8] to process the database of this speaker, 
adjusting the average pitch to match that of the target speaker. 
The software does not allow independent control of formants 
and pitch; having that capability, as well as the ability to 
process other aspects of the waveform such as breathiness and 
glottal formant, would enhance the perceived match between 
the auxiliary and target speakers. The field of voice 
conversion is rapidly developing; using advanced techniques 
would undoubtedly help to improve the quality of our pooled-
speaker synthesis. 

The pitch-adjusted data from this third speaker were then 
pooled with the data from the other two speakers to form a 
dataset with approximately three times the amount of data in 
the target-speaker-specific database, although the number of 
triphone contexts remained approximately constant because 
the speakers all read essentially the same script. 

I  74



3.1. Building the Pooled-speaker Database 

The process of building the pooled dataset follows the 
framework developed for the IBM Expressive Speech System 
described more fully in Hamza [1]. In summary, each 
segment in the database is labeled by an attribute vector 
carrying information about that segment. One element of the 
attribute vector is the identity of the speaker who originally 
spoke that segment.  During synthesis, the input, which is in 
the form of an extended SSML document, is processed by an 
XML parser.  The extended SSML tags are used to form a 
target attribute vector, analogous to the one used in the voice-
dataset-building process to label the speech segments.  In this 
case, one element of the target attribute vector is the identity 
of the target speaker. Another element may be the expressive 
style, say “conveying good news,” “conveying bad news,” 
“asking a question,” or “neutral” as was considered in Eide 
[4].  An attribute cost function C(t,o) penalizes the use of a 
speech segment labeled with attribute vector o when the target 
is labeled by attribute vector t. A cost matrix Ci is defined by 
hand for each element i in the attribute vector.  An example of 
such a matrix is shown below for the speaker element. 

 Speaker 1 Speaker 2 Speaker 3 
Speaker 1 0 0.2 0.5 
Speaker 2 0.1 0 0.5 
Speaker 3 0.3 0.3 0 

Table 1: Cost matrix for “speaker” element of attribute 
vector.  Columns are target speaker; rows are segment source 
speaker.  

The matrix specifies, for example, that the cost of using a 
segment from Speaker 2 when Speaker 3 is the target is 0.5. 
Asymmetries in the matrix may arise because of different 
sizes of datasets.  If one speaker has a very large dataset 
compared to another speaker, it may make sense to penalize 
more heavily the use of segments from the smaller dataset 
when the speaker with the large dataset is the target, and to 
penalize less heavily the use of segments from the large 
dataset when the speaker corresponding to the small dataset is 
the target. 

4. Results 

4.1. Pooled-Speaker Expressive Prosody Models 

In this section we report the results of an experiment in which 
we compared the quality of communicating good news to 
listeners using pooled-speaker vs. speaker-specific expressive 
prosody models.  The speaker-specific models were built 
from roughly 1,000 good news sentences read by the target 
speaker. The speaker-pooled models included data from the 
target speaker as well as one male and one additional female 
speaker. All segments were spoken by the target speaker. 
Listeners were presented with 29 sentences from each of the 
two systems and were asked to rate the quality of the system 
in delivering the message on a scale of 1 (poor) to 5 
(excellent).  Ten male and ten female native-US-English 
speaking listeners participated. Results are shown in Table 2, 
and are significant at the p < 0.05 level. 

Prosody Model MOS 
Speaker-specific 3.56 
Speaker-pooled 3.72 

Table 2: MOS Results for Speaker-specific vs. Speaker-pooled 
prosody models in conveying good news. 

4.2. Pooled-Speaker Segments 

In this section we report the results of a listening test in which 
we compare the quality of synthesis generated from the 
target-speaker-specific database with the quality of synthesis 
generated from the pooled databases of three professional 
female speakers as described in Section 3. Target-speaker-
specific prosody models were used for both the target-
speaker-specific and the pooled segment cases.  

On average, about 50% of the segments chosen were 
originally from the target speaker, about 40% of the segments 
were from the (unprocessed) first auxiliary speaker, and about 
10% of the segments were from the (processed) second 
auxiliary speaker. These percentages can be adjusted by 
tuning the contribution to the cost function of the penalty for a 
mismatch between the segment speaker and the target speaker 
given in Table 1.  However, even with a very low speaker 
substitution cost, the spectral-continuity component of the 
segment-selection cost function works to ensure that large 
spectral mismatches are not spliced together. Shown in Figure 
1 is a spectrogram resulting from the pooled-speaker system.  
No obvious spectral discontinuities are observed, even though 
all 3 speakers are represented in this waveform.   

Figure 1: Spectrogram of pooled-speaker TTS 

We ran a listening test consisting of ten male and ten female 
native U.S. English speakers rating the quality of output from 
the target-speaker-specific and the pooled-speaker systems on 
a scale of 1 (poor) to 5 (excellent).  Twenty-five sentences 
from each system were presented to the listeners; fifteen of 
the sentences were “in-domain” in that they were about topics 
which were represented in the speakers' scripts, and ten of the 
sentences were “general-domain” in that their subject matter 
was not specifically covered in the speakers' scripts.  We 
present the results for these two cases separately, in Tables 3 
and 4, respectively. 

Segments MOS 
Speaker-specific 3.50 
Speaker-pooled 3.45 

Table 3: MOS Results for Speaker-specific vs. Speaker-pooled 
segments on in-domain sentences. 
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On the in-domain sentences, listeners showed a slight 
preference for the speaker-specific models. For these 
sentences the speaker-specific database contains a rich set of 
segments from which to choose; the speaker-specific data are 
adequate for producing good quality output and listeners 
tended to prefer the homogeneity of the voice to the small 
increase in prosodic richness afforded by the speaker-pooled 
dataset. 

On the other hand, for the general-domain sentences, listeners 
demonstrated a preference for the pooled-speaker system over 
the speaker-specific one, as indicated in Table 4.  In this case 
the improved spectral smoothness and prosodic structure 
afforded by the increase in dataset size outweighed the loss in 
homogeneity by pooling three voices. Interestingly, in casual 
conversation by the participants after the tests, nobody 
remarked that he/she had perceived the sentence as being 
uttered by more than one voice. 

Segments MOS 
Speaker-specific 3.06 
Speaker-pooled 3.16 

Table 4: MOS Results for Speaker-specific vs. Speaker-pooled 
segments on general-domain sentences. 

5. Discussion 

In this paper we have examined the use of data from 
several speakers in building a concatenative text-to-speech 
system. We explored separately the sharing of data for 
building prosody models and the sharing of data for selecting 
segments for concatenation. Presumably using each of these 
techniques together would result in larger improvements over 
the speaker-specific methods than either technique separately.  

For applications in which only a very small sample of a target 
voice is available, we expect that the pooled-data approach to 
prosody modeling will be very useful as a part of a system 
employing voice morphing, because we need only estimate a 
mean and standard deviation for the target speaker in order to 
generate a well-estimated prosody model. 

The quality of the speech output in the case of pooled 
segments relies on high-quality of the signal processing to 
convert auxiliary voices to sound as much as possible like the 
target speaker. The inherent tradeoff between the amount of 
data available and the quality of the morphing and voice 
match will increasingly balance at larger and larger amounts 
of morphing as that technology matures. Thus, we expect the 
improvements from pooling techniques to outperform 
speaker-specific methods by ever-increasing amounts.  
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