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ABSTRACT

An ideal spoken dialogue system listens continually and 

determines which utterances were spoken to it, understands them 

and responds appropriately while ignoring the rest.  This paper 

outlines a simple method for achieving this goal which involves 

trading a slightly higher false rejection rate of in domain 

utterances for a higher correct rejection rate of Out of Domain 

(OOD) utterances.   The system recognizes semantic entities 

specified by a unification grammar which is specialized by 

Explanation Based Learning (EBL), so that it only uses rules 

which are seen in the training data.  The resulting grammar has 

probabilities assigned to each construct so that 

overgeneralizations are not a problem. The resulting system only 

recognizes utterances which reduce to a valid logical form which 

has meaning for the system and rejects the rest.  A class N-gram 

grammar has been trained on the same training data.  This 

system gives good recognition performance and offers good out 

of domain discrimination when combined with the semantic 

analysis.  The resulting systems were tested on a Space Station 

Robot Dialogue Speech Database and a subset of the OGI 

conversational speech database.  Both systems run in real time 

on a PC laptop and the present performance allows continuous 

listening with an acceptably low false acceptance rate.  This type 

of open microphone system has been used in the Clarissa 

procedure reading and navigation spoken dialogue system which 

is being tested on the International Space Station. 

1. INTRODUCTION 

Deciding when the system is being spoken to represents a 

continuing problem for spoken dialogue systems, 

especially when other people are in the environment 

where the system is being used.  Early spoken dialogue 

systems used "push-to-talk" as a way to indicate start and 

end of user speech intended for the system This method 

was used at MIT and at SRI [1], [2]

A later development was the attention phrase or name 

which was used by several systems. The Bell Labs system 

used “Watson” as the name of the assistant. [3] Prefixing 

any command to the system with the name allowed the 

system to ignore any other speech.  This unfortunately 

ignores the talker if he or she forgets to use the word of 

address.

A more recent development has been open-microphone 

speech recognition, where the end pointing is based on 

the presence of sound (assumed to be speech) instead of 

silence for a sufficiently long time. Systems using such 

an approach include the many telephone based systems 

such as HMIHY [4], spoken translation systems such as 

the Japanese-English system by Karaorman et al. [5] and 

a Spanish-English system by Roe et al [6]. 

The fundamental assumption is made that the user is 

always talking to the system, or in a speech translation 

system is always talking to another person in another 

language via the system. Therefore the system should 

always attempt to interpret everything that the user says, 

no matter how unlikely the interpretation, and respond to 

that in a reasonable way. 

Over the past few years, the RIALIST group at NASA 

Ames has developed systems for tasks in which the usual 

assumptions do not hold.  The user may be speaking to 

the dialogue system or 

1) speaking to other people in the area or remotely 

2) speaking to other dialogue agents over a 

communications link 

This means that the system must discriminate against 

speech which is not directed to it.  This paper presents the 

first part of the solution to this problem, the development 

of a speech understanding system which can discriminate 

between speech which is semantically meaningful to it 

and speech which has no meaning within the system.  This 

still leaves speech which has meaning within the system, 

but which is spoken to another person or agent.  It is 

possible to use context and the particular response 

expected in this particular turn of the dialogue, as a 

mechanism to curtail false positives.  For example a “yes” 

utterance would be accepted only if a yes/no question had 

been asked.  This context method is presently used in the 
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NASA systems and decreases the false positives for these 

short utterances. 

Discriminating between in domain and open 

conversational speech is more than an n choice problem of 

deciding the closest distance to the representative set.  

This technique has been shown useful in OOD rejection 

for systems which have limited confounding speech. [18] 

In a recent study of human’s working in a simulated 

planetary exploration environment, 60% of the speech 

was between humans and 40% was between humans and 

the dialogue system. [19] The problem with 

conversational speech is that the topics, vocabularies, and 

expressions change with the situation.  So while it might 

be tempting to make a language model for the 

conversational database used in testing the OOD 

discrimination and use utterance verification techniques, 

this would not generalize to a real world application.  

Rather we have chosen to concentrate on improving the in 

domain discrimination of the dialogue system and depend 

on that to eliminate OOD utterances.   

2. RULE BASED LANGUAGE MODELS 

Most of the present dialogue systems use either n-gram 

grammars or hand built finite state grammars for speech 

recognition.  N-gram grammars require large amounts of 

transcribed speech data in order to train accurate models.  

Because these grammars never have enough training data 

to cover all possible word sequences which may 

potentially be said to the system, the grammar is backed 

off to allow previously unseen word sequences to be 

recognized.  This has the unfortunate side effect of 

allowing a large number of false accepts, for data which is 

out of domain or ungrammatical.  The system in effect 

coerces any input speech to be the chain of the most 

probable n-gram sequences recognizable by the grammar.  

Thus conversations with coworkers or other 

communication channels become sources of speech 

recognition errors for an n-gram system.  Thus 

recognition performance for word and class n-gram 

systems has been very good, but discrimination of out of 

domain utterances has not been good.  Tools for 

constructing n-gram grammars have been made available 

to the research community, so it is relatively easy to 

construct an n-gram grammar system.  [8] [9] [10] 

Hand built finite state grammars require large amounts of 

human effort to develop and require extensive rewriting 

when switching to a new domain.  These grammars also 

tend to be fragile in that only a few ways of expressing an 

action or request are allowed or designed in.  Many of the 

commercial telephone dialogue systems use this style of 

grammar and provide tools for constructing and compiling 

them.  Over a long period of use, grammatical 

constructions which are in common use but are not in the 

original grammar are added and these systems become 

more natural to use. 

2.1 Typed Unification Grammar
Typed Unification grammars can potentially overcome the 

lack of discrimination in n-gram grammars by recognizing 

semantic meanings of the input speech. This allows many 

different ways of giving the same command, while 

discriminating against OOD utterances. Semantic 

grammars have traditionally required trained linguists to 

write them and each new domain needed many iterations 

with real data to insure coverage.  For real tasks broad 

coverage rule based grammars allow phrases and 

sentences which are grammatical, but only a few of the 

constructions are actually used by humans within a 

particular domain. A way is needed to specialize the 

grammar and its underlying rule set to a new domain.  The 

Explanation Based Learning (EBL) machine learning 

method developed for language by Manny Rayner [11] 

allows a general rule based grammar to be specialized to a 

new sub-domain automatically, given a corpus of training 

data. It is only necessary to make sure that all of the 

sentences in the new domain are parsible by the 

unification grammar, before applying EBL to it.  EBL 

then prunes down the number of rules to those seen in the 

training corpus.  A further specialization by training 

probabilities for the elements in the grammar, gives very 

good recognition performance. We also provide results 

from a non-probabilistic grammar to show how important 

this step is.  In our system the result of utterance 

recognition is a logical form obtained from a second 

parsing step using the Gemini system [12].  Thus 

utterances which result in a valid logical form are “within 

domain” and those which are not are rejected. 

Another possibility is to use a class n-gram grammar for 

recognition, and then use the unification grammar to 

determine if the utterance has meaning within the system.  

This method was also tried and worked well within this 

domain. 

2.2 Unification Grammar for PSA 
The Personal Satellite Assistant (PSA) is a robotic 

assistant which is designed to navigate around in the 

International Space Station (ISS) propelled by fans.  It is 

capable of making measurements and examining the 

status of various components visually. [13] The language 

consists of commands to navigate to various parts of the 

spacecraft and perform measurements.  The commands 

can be elliptic and contain pronominal references.  

Further details of the task and language can be found in 

the reference [14].  The grammar is a large coverage 

grammar which was constructed by hand to cover a much 

larger domain than the PSA domain. This grammar and 

grammar compilation tools are publicly available in the 

I  66



open source Regulus project [16], which began as a joint 

effort between NASA Ames and Fluency Ltd.  EBL was 

used to prune down the number of rules to those 

necessary to parse the training corpus. This makes a more 

compact grammar which runs faster in the Nuance 

Communication speech recognition engine [17], than a 

non-specialized grammar. This grammar still lacks 

probabilities, so a further step of using a training corpus 

to compute probabilities results in a second probabilistic 

grammar.   

In our system the result of utterance understanding is a 

logical form obtained from the parsing step.  Thus 

utterances which result in valid logical forms are “within 

domain” and those which are not are rejected.   This 

allows the system to discriminate between in domain and 

out of domain utterances in a principled way. 

3. CLASS N-GRAM LANGUAGE MODELS 

A class trigram grammar for the PSA domain was 

constructed with 2,211 training utterances containing 

approximately 11,469 words. The classes can either be 

constructed by hand, using knowledge of the domain or 

categories from a unification grammar or completely 

automatically [15].  The automatically generated classes 

have the problem that they often provide classes of 

inhomogeneous words.  Our simple class n-gram 

grammar uses noun compounds as destination classes, 

time classes and number classes as recommended by 

Andreas Stolcke.  These classes were constructed by 

hand.  The SRI language modeling toolkit [9] was used to 

construct the class n-gram grammar. The resulting 

grammar was then compiled into a Nuance grammar. [17] 

4. PERFORMANCE MEASUREMENT 

In order to test the claim that the EBL Unification 

grammar based system is able to discriminate between 

speech in domain and speech out of domain, a series of 

experiments was performed.  The first experiment was to 

test the recognition of in domain speech by the systems 

on PSA dialogues.  The commands are complete 

sentences, but tend to be short. However the grammar 

allowed the cascading of requests, so that the utterance 

“Measure the temperature at the pilot’s seat and the crew 

hatch and the pressure at the lockers.” is a legal utterance.  

This means that a strict word limit on the length of the 

utterances would not be effective in discriminating 

between the in domain and out of domain utterances.  The 

PSA data was segmented into a training and test portion, 

with 2,211 utterances in the training set and 3,888 in the 

test set.  The same talker did not appear in both sets.   

The second test set consisted of short utterances from the 

conversational OGI 11 language corpus, cut from the 

“stories-at” section of the corpus.  There were 117 

utterances in this test set and each utterance consisted of a 

single sentence or phrase.  This makes this data 

comparable in length to the PSA in domain utterances, to 

eliminate any length effects. 

The third test set consisted of OOD utterances recorded 

during the PSA data collection.  These 25 utterances 

serve as verification that the error rates are similar 

between the OGI data and OOD PSA data, and they were. 

Recognizer WER AER F Reject 

PSA Class 5.6 % 5.0 % 2.5 % 

PSA 10.6% 9.4 % 2.2 % 

PSA Pcfg 8.2 % 6.5 % 3.1 % 

Table 1: In-domain Performance with Minimum WER 

The three grammars were compiled into Nuance 

grammars, the PSA EBL grammar, the PSA EBL 

probabilistic grammar and the PSA class n-gram 

grammar.  These were tested on all of the data sets, and 

the results shown for the systems trained to minimize the 

total word error rate (WER) in Table 1 and 2.  The 

categories in the tables and plots are Accepted Error Rate 

(AER) which is the WER on non-rejected utterances, 

Rejection Rate (which can be false or correct), False 

Accept (F Accept) and False Reject (F Reject).

The performance for the class n-gram is slightly better 

than the PCFG grammar for the in domain data, except 

that the Class n-gram has a higher false acceptance rate.  

The unification based grammar without probability 

performs much worse, and will not be discussed further.  

It can be seen that optimizing for WER results in systems 

which have poor rejection of out of domain utterances.  

Recognizer AER Reject F Accept 

PSA Class 95.7 % 5.3% 94.68%

PSA 96.2 19.2 % 80.8 % 

PSA Pcfg 100 % 30.9% 69.1 % 

Table 2: Out of domain performance with Minimum WER 

Next the systems are tuned to optimize out of domain 

utterances by turning up the rejection threshold, with the 

goal of balancing false rejections in the in domain 

utterances with false acceptances in the out of domain 

utterances.  This is done by increasing the weighting of 

the grammar and by increasing the rejection threshold.  

The results for the PCFG are shown in Figure 1and and 

for the Class n-gram in Figure 2 for various rejection 

thresholds, grammar weights and word insertion penalties. 
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PSA_PCFG Error Rate, False Reject and Corr Reject GWT6
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Figure 1: PCFG performance Grammar WT 6 

The AER performance is only slightly worse on the in 

domain recognition and the false rejection also increases 

slightly.   However this makes a huge difference in the

false accept rate for out of domain utterances. 

PSA Class n-gram Error and Rejection Rate GWT 7
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Figure 2: Class n-gram performance Grammar WT 7 

Both the Pcfg and the class n-gram system provide good 

performance for rejecting out of domain utterances while

preserving in domain performance. With training data

around 2,000 utterances the n-gram performance is

somewhat better for reject thresholds of 50. 

8. CONCLUSIONS
Spoken dialogue systems benefit greatly from being able

to determine whether the user is talking to the system or to

another person. By tuning the system to optimize OOD 

rejection and using a unification based grammar with

probabilities compiled for semantic analysis we are able to

discriminate in domain from out of domain utterances

with good accuracy.  It is possible to add other post

processing to try to improve the performance further, and 

this will be the subject of further work.
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