
TOWARDS LEARNING TO CONVERSE: STRUCTURING TASK-ORIENTED
HUMAN-HUMAN DIALOGS

Srinivas Bangalore, Giuseppe Di Fabbrizio

AT&T Labs-Research
180 Park Ave

Florham Park, NJ 07932

Amanda Stent

Dept of Computer Science
Stony Brook University

Stony Brook, NY

ABSTRACT

Data-driven techniques have influenced many aspects of speech and
language processing. Models derived from data are generally more
robust than hand-crafted systems since they better reflect the dis-
tributions of the phenomena being modeled. With the availability
of large spoken dialog corpora, dialog management can now reap
the benefit of data-driven techniques. In this paper, we present our
view of structuring human-human dialogs in order to learn mod-
els for human-machine dialogs. We present the problems of dialog
segmentation and dialog act labeling, develop a model for predict-
ing and labeling topic segments and dialog acts and evaluate the
model on customer-agent dialogs from a catalog service domain.

1. INTRODUCTION

As large amounts of language data have become more widely avail-
able, approaches to sentence-level processing tasks such as parsing,
language modeling, named-entity detection and machine transla-
tion have become increasingly data-driven and empirical. Models
for these tasks can be trained to capture the distributions of phe-
nomena in the data resulting in improved robustness and adapt-
ability. However, this trend has yet to significantly impact ap-
proaches to dialog management in dialog systems. Dialog man-
agers (both plan-based and call-flow based) have traditionally been
hand-crafted and consequently somewhat brittle and rigid. With the
ability to record, store and process large numbers of human-human
dialogs (e.g. from call centers), we anticipate that data-driven meth-
ods will increasingly influence approaches to dialog management.

A successful dialog system relies on the synergistic working of
several components: speech recognition (ASR), spoken language
understanding (SLU), dialog management (DM), language gener-
ation (LG) and text-to-speech synthesis (TTS). While data-driven
approaches to ASR and SLU are prevalent, such approaches to DM,
LG and TTS are much less well-developed. In on-going work,
we are investigating data-driven approaches for building all com-
ponents of spoken dialog systems.

In this paper, we present one aspect of this research program –
inferring models that predict the structure of task-oriented dialogs.
In Section 2, we review current approaches to building dialog sys-
tems. In Section 3, we review related work in data-driven dialog
modeling. In Section 4, we present our view of analyzing the struc-
ture of task-oriented human-human dialogs. In Section 5, we dis-
cuss the problems of segmenting and labeling dialog structure and
building models for predicting these labels. In Section 6, we re-
port experimental results on a large corpus from a catalog ordering
service.

2. CURRENT METHODOLOGY FOR BUILDING
DIALOG SYSTEMS

Current approaches to building dialog systems involve several man-
ual steps and careful crafting of different modules for a particu-
lar domain or application. The process starts with a small scale
“Wizard-of-Oz” data collection where subjects talk to a machine
driven by a human ‘behind the curtains’. A user experience (UE)
engineer analyzes the collected dialogs, subject matter expert in-
terviews, user testimonials and other evidence (e.g. customer care
history records). The UE engineer uses this information to design
some system functionalities, mainly: the system’s semantic scope
(e.g. call-types in the case of call routing systems), the LG model,
and the DM strategy. A larger automated data collection follows [1]
and the collected data is transcribed and labeled by expert label-
ers following the UE engineer recommendations. Finally, the tran-
scribed and labeled data is used to train both the ASR and the SLU.

This approach has proven itself in many deployed dialog sys-
tems. However, the initial UE requirements phase is an expensive
and error prone process because it involves non-trivial design de-
cisions that can only be evaluated after system deployment. More-
over, scalability is compromised by the time, cost and high level of
UE know-how needed to reach a consistent design.

In the AT&T VoiceTone R
�

[2] product, the process of building
speech-enabled automated contact center services has been formal-
ized and cast into a scalable commercial environment in which dia-
log components developed for different applications are reused and
adapted. However, we still believe that exploiting dialog data to
train/adapt or complement hand-crafted components will be vital
for robust and adaptable spoken dialog systems.

3. RELATED WORK

Automatic creation of part or all of a dialog system from data is
a research area of increasing interest (e.g. [3, 4, 5, 6, 7]). How-
ever, as described in the previous section, the data are used only
indirectly; to help humans write dialog scripts for dialog manage-
ment or templates for response generation. For example, [7] limit
their automatic acquisition of dialog behavior to acquiring domain
information for discussion in dialog. [4] focuses on automatic ac-
quisition of sentence planning and surface realization rules from
labeled/annotated corpora. In the work most similar to ours, [6]
used a corpus of transcribed and annotated telephone conversations
from the banking domain. They trained separate task and dialog
act classifiers on this corpus. For task identification they report an
accuracy of 85% (true task is one of the top 2 results returned by
the classifier); for dialog act tagging they report 86% accuracy.

There has been considerable research on automatic dialog act
tagging (e.g. [8, 9, 10, 11, 12]) and the building of dialog models
from data annotated with dialog act tags (e.g. [13, 9, 14, 15]). Sev-
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eral disambiguation methods (hidden Markov models, maximum
entropy models, decision trees, SVMs) that include a variety of fea-
tures (cue phrases, word n-grams, prosodic features, syntactic fea-
tures, dialog history) have been used for dialog act tagging. How-
ever, some of this research used text or read speech rather than spo-
ken dialog, and the tagging schemes used were not specific enough
to be used for generation. More recent work has looked at human-
human dialog in meetings ([16, 17]), and at human-computer dia-
log [18], but has focused on prosodic features.

4. STRUCTURAL ANALYSIS OF A DIALOG

In order to infer models of task-oriented dialog, we annotate human-
human dialogs according to the structure shown in Figure 1 and
then train models to predict this structure. We consider a dialog to
be composed of a set of high-level tasks (e.g. ordering, canceling,
order checking). A subset of tasks might appear in any order in a
dialog. Each task is composed of a sequence of subtasks/topics,
and each subtask is composed of a sequence of interactions be-
tween the user and the agent. Each interaction is represented as a
tuple consisting of a dialog act and a set of predicate-argument rela-
tions. Each clause in an utterance realizes one predicate-argument
relation. To build our dialog structure, we apply several processes
to input utterances: utterance segmentation (Section 4.1), syntac-
tic annotation (Section 4.2), dialog act tagging (Section 4.3) and
subtask labeling (Section 5).

Dialog

Task

Topic/SubtaskTopic/Subtask

Task Task

Clause

UtteranceUtteranceUtterance

Topic/Subtask

DialogAct,Pred−Args DialogAct,Pred−Args DialogAct,Pred−Args

Fig. 1. Structural analysis of a dialog

4.1. Utterance Segmentation

The task of “cleaning up” spoken language utterances by detect-
ing and removing speech repairs and dysfluencies and identifying
sentence boundaries has been a focus of spoken language parsing
research for several years [19, 20, 21, 22, 23, 24, 25, 26, 27]. In
related work [27], we have developed a system that takes as input
the ASR output text for a user’s utterance, and that outputs clauses.
The system annotates an utterance for sentence boundaries, restarts
and repairs, and identifies coordinating conjunctions, filled pauses
and discourse markers. These annotations are done using a cascade
of classifiers, details of which are described in [27].

4.2. Syntactic Annotation

In order to extract predicate-argument relations for each clause, we
use a dependency parser [28] based on supertags [29]. Supertags
encapsulate predicate-argument information in a local structure. They are

composed with each other using the substitution and adjunction op-
erations of Tree-Adjoining Grammars [30] to derive a dependency
analysis of an utterance.

We also detect and extract named entities. By contrast to ap-
proaches to named entity extraction discussed in the literature, we
cannot rely on annotated data. In on-going work, we are exploring
techniques that use meta-data (e.g. application-specific databases),
as well as linguistic cues in utterances, to identify named entities
from unannotated data.

4.3. Dialog Act Tagging

We use a domain-specific dialog act tagging scheme based on an
adapted version of DAMSL [13]. The DAMSL scheme is quite
comprehensive, but the multi-dimensionality of the scheme makes
the building of models from DAMSL-tagged data complex [9]. Fur-
thermore, the generality of the DAMSL tags reduces their utility for
natural language generation. We were particularly concerned with
obtaining sufficient discriminatory power between different types
of statement (for generation), and to include an out-of-domain tag
(for interpretation). Other tagging schemes, such as the Maptask
scheme [31], are also too general for our purposes. We provide a
sample list of our dialog act tags in Table 2. Our experiments in
automatic dialog act tagging are described in Section 6.3.

5. MODELING SUBTASK SEGMENTATION

As discussed previously, in our application domain (customer ser-
vice) most dialogs contain discussion of one task, composed of sev-
eral subtasks. For example, an order placement task is typically
composed of the sequence opening, contact-information, order-
item, related-offers, summary. The goal of subtask segmentation is
to predict if the current utterance in the dialog is part of the current
subtask or starts a new subtask. We model this prediction problem
as a classification task as follows: given a sequence of utterances� � in a dialog � � � � 	 � � 	 � � � 	 � � and a subtask label vocabu-
lary � � � � � � , we need to predict the best subtask label sequence� � � � � 	 � � 	 � � � 	 � " as shown in Equation 1.

� � � $ & ' ( $ +, - . 0 1 2 2 2 1 . 3 5 � � 7 � � (1)

We refine this model by viewing each subtask as having a be-
gin, middle and an end utterance. The refined vocabulary of sub-

task labels is denoted as � 8 � : � ;� 	 � <� 	 � =� 7 � � � � ? . Further-
more, the search is limited to the label sequences that respect prece-
dence among the refined labels (begin @ middle @ end). This well-
formedness constraint is captured in a grammar G encoded as a reg-

ular expression ( A � D � � F � � � ;� � � <� � � � =� � �
). Thus the search for the

refined label sequence is shown in Equation 2. We assume markov
independence between labels and rewrite Equation 2 as Equation 3.
We use a classifier for assigning a refined subtask label to each ut-
terance conditioned on a vector of local contextual features ( G � ).
We use the speaker identity (agent versus customer) and H -grams
computed from the current utterance, previous utterance, next ut-
terance and previous turn as local contextual features. We also in-
vestigate the effect of including the previous subtask predictions
contextual features for subtask label prediction. In order to cope
with the prediction errors of the classifier, we approximate A � D �
with an H -gram language model on sequences of the refined tag
labels.
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� �� � � � � 	 � � � � � � � � � � � � � �  � � � � ! # $ % � � & ' ( (2)

) � � � 	 � � � � � � � � � � � � � �  � � � � ! #
+,

- � . $ % / - & 0 - ( (3)

We use a discriminative classification model, Boostexter, based
on the boosting family of algorithms first proposed in [32] in order
to estimate $ % / - & 0 - ( . In the boosting framework, each feature is
considered as a weak classifier and a set of features are iteratively
selected to be combined to obtain an accurate classifier. The set
of selected base classifiers constitutes the model ( 2 ). As described
in [33], Boostexter uses confidence rated classifiers 3 that, rather
than providing a binary decision of -1 or +1, output a real number3 % � ( whose sign (- or +) is interpreted as a prediction, and whose
magnitude

& 3 % � ( &
is a measure of “confidence”.

The output of the model on a new instance ( � ) is computed as2 % � ( � 8 � � . 3 � % � ( , i.e. the sum of confidence of all the classi-
fiers 3 � selected during the training process. The real-valued pre-
dictions of the final classifier 2 can be converted into probabilities
by a logistic function transform; that is

$ % 9 � < & � ( � = ?
� A #

= ?
� A # C = E ?

� A # (4)

6. EXPERIMENTS AND RESULTS

In this section, we present the results of the experiments for pre-
dicting subtask and dialog act labeling.

6.1. Data

We used 915 telephone-based customer-agent dialogs related to the
task of ordering products from a catalog. Each dialog was tran-
scribed by hand; all numbers (telephone, credit card, etc.) were
removed for privacy reasons. The average dialog lasted for 3.71
minutes and included 61.45 changes of speaker. A single customer-
service representative might participate in several dialogs, but cus-
tomers are represented by only one dialog each. Although the ma-
jority of the dialogs were on-topic, some were idiosyncratic, in-
cluding: requests for order corrections, transfers to customer ser-
vice, incorrectly dialed numbers, and long friendly out-of-domain
asides. Annotations applied to these dialogs include: utterance seg-
mentation (Section 4.1), syntactic annotation (Section 4.2), dialog
act tagging and subtask segmentation. The former two were done
in a domain-independent fashion while the latter two are domain-
specific.

6.2. Features

In order to train the dialog act (DA) and subtask segmentation clas-
sifiers, we used static and dynamic features (Table 1). Static fea-
tures are word F -gram features derived from the local context of the
utterance being tagged (e.g. Speaker ID (agent versus customer), F -
grams from current, previous utterance) while dynamic features are
computed based on previous predictions (e.g. two previous subtask
labels).

6.3. Dialog Act Labeling

As mentioned in Section 4, we used a domain-specific tag set de-
signed to be useful for language generation. We have a total of 67
dialog act tags (DAMSL has 375, the Maptask scheme has 13). In

Label Type Features

Dialog Speaker, word bigrams from
Acts current/previous utterance
Subtask Speaker, word trigrams from current utterance,

previous utterance/turn, next utterance,
unigram, trigram (two previous) subtask labels

Table 1. Features used for the classifiers.

Table 2, we illustrate some of the tags we used for annotation. We
annotated 1864 clauses from 20 dialogs selected at random from
our corpus. In our annotation, a single utterance may have multiple
dialog act labels.

Type Subtype
Ask Info
Explain Catalog, CC Related, Discount, Order Info

Order Problem, Payment Rel, Product Info
Promotions, Related Offer, Shipping

Conversational Ack, Goodbye, Hello, Help, Hold,
YoureWelcome, Thanks, Yes, No, Ack,
Repeat, Not(Information)

Request Code, Order Problem, Address, Catalog,
CC Related, Change Order, Conf, Credit,
Customer Info, Info, Make Order, Name,
Order Info, Order Status, Payment Rel,
Phone Number, Product Info, Promotions,
Shipping, Store Info

YNQ Address, Email, Info, Order Info,
Order Status,Promotions, Related Offer

Table 2. Sample set of dialog labels used in our domain

Table 3 shows the error rates for dialog act labeling using word
bigram features from the current and previous utterance. We com-
pare error rates for our tag set against those of Switchboard-DAMSL
and Maptask using the same features and the same classifier learner.
The error rates are an average of ten-fold cross-validation execu-
tion. It is interesting to note that the error rate for our tag set is
close to the error rate for DAMSL. Also, we suspect that the lack
of improvement in the error rate for our tag set when including the
previous utterance might be due to the small size of our annotated
corpus (about 2K utterances for our domain as against about 20K
utterances for Maptask and 200K utterances for DAMSL).

Tagset current + previous
utterance utterance

Catalog Domain 38.8% 38.8%
DAMSL 39.3% 37.2%
Maptask 31.5% 29.6%

Table 3. Error rates in dialog act tagging

6.4. Subtask Segmentation and Labeling

For subtask labeling, we used a random partition of 864 dialogs as
the training set and 51 dialogs as the test set. All the dialogs were
annotated with subtask labels by hand. We used a set of 18 labels
grouped as shown in Table 4.

Table 5 shows error rates on the test set for predicting refined
subtask labels using word n-grams computed on different dialog
contexts as features for training classifiers. It is clear from the table
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Category Subtask Labels
1 opening, closing
2 contact-information, delivery-information,

payment-information, shipping-address,summary
3 order-item, related-offer, order-problem

discount, order-change, check-availability
4 call-forward, out-of-domain, misc-other, sub-call

Table 4. Subtask label set

that the well-formedness constraint on the refined subtask labels
vastly improves prediction accuracy.

Tag Utterance Context
Context

Current +prev +prev +prev +prev turn
utt utt +next utt turn +next utt

Unigram 32.6% 28.6% 27.1% 27.7% 26.8%
(47.7%) (41.3%) (35.7%) (40.8%) (35.5%)

Trigram 1.3% 1.4% 1.6% 1.4% 1.6%
(16.2%) (14.7%) (8%) (16.0%) (8%)

Table 5. Error rate for predicting the refined subtask labels. The er-
ror rates without the well-formedness constraint is shown in paren-
thesis.

The experiments reported in this section have been performed
on transcribed speech. The audio for these dialogs, collected at
a call center, was stored in a compressed format, so the speech
recognition error rate is high. In future work, we will assess the
performance of dialog structure prediction on recognized speech.

The research presented in this paper is but one step, albeit a
crucial one, towards achieving the goal of inducing human-machine
dialog systems using human-human dialogs. The dialog structure is
necessary for language generation (predicting the agents’ response)
and dialog state specific text-to-speech synthesis. However, there
are several challenging problems that remain to be addressed.

7. CONCLUSIONS

In this paper, we have presented an approach to structuring human-
human dialogs with a long term goal of learning models for human-
machine dialogs. We presented the problem of decomposing a di-
alog into subtask segments and develop a model for predicting and
labeling these segments. We have evaluated the model on customer-
agent dialogs from a catalog service domain and show the effective-
ness of the well-formedness constraint in this task.

We view a dialog between two participants as an interleaved
trajectory of utterances mediated by intermediate structures such as
subtask and dialog act structure. In this paper, we have presented
models to predict the intermediate structure. In on-going work, we
are exploiting this structure in order to generate the next utterance.
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