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ABSTRACT 
This paper presents a new speech recognition framework towards 

fulfilling optimal Bayes decision theory, which is essential for 

general pattern recognition. The recognition procedure is 

developed through minimizing the Bayes risk, or equivalently the 

expected loss due to classification action. Typically, loss function 

measures the penalty/evidence of choosing a candidate hypothesis. 

This function was manually specified or empirically calculated. 

Here, we exploit a novel Bayes loss function via testing the 

hypotheses whether the classification action produces loss or not. 

A Bayes factor is derived to measure loss in a statistical and 

meaningful way. Attractively, Bayes loss function using predictive 

distributions is robust to the uncertainty of environments. Also, 

optimizing this Bayes criterion equals to minimizing classification 

errors of test data. The relation between the minimum 

classification error (MCE) classifier and the proposed optimal 

Bayes classifier (OBC) is bridged. Specifically, the logarithm of 

Bayes factor in OBC is analogous to the misclassification measure 

in MCE when using predictive distribution as the discriminant 

function. We accordingly build a robust and discriminative 

classification for large vocabulary continuous speech recognition. 

In the experiments on broadcast news transcription, the new OBC 

rule significantly outperforms traditional maximum a posteriori

classification. 

1. INTRODUCTION 
Large vocabulary continuous speech recognition (LVCSR) plays a 

crucial role of establishing many human-machine communication 

systems. Great research efforts have been made to solve different 

issues in LVCSR system. Among these issues, how to build a 

robust classification rule or decoding algorithm is critical to 

achieve desirable speech recognition performance. Starting from 

statistical pattern recognition (PR) [3] viewpoint, we should tackle 

this issue following the optimal Bayes decision theory where the 

Bayes risk or expected loss is minimized to achieve desirable 

LVCSR performance. Accordingly, Goel and Byrne [5] developed 

the minimum Bayes risk (MBR) classification to improve 

conventional speech recognition paradigm selecting the word 

string with the highest posterior probability or equivalently 

adopting the maximum a posteriori (MAP) decision rule. In fact, 

MAP classification was a special realization of MBR classification 

when assigning equal loss for different misclassification actions. 

Nevertheless, loss function acts as a classification penalty, which 

is measurable for different misclassifications from test data. If we 

can incorporate representative loss functions, MBR should be 

much better than MAP classification. Conceptually, loss function 

has similar meaning of merging confidence measure in decoding 

algorithm [16]. Word posterior probability was merged to improve 

LVCSR. Also, confidence based search algorithm was exploited to 

prune unlikely hypotheses using likelihood ratio test [1].  

Intuitively, MBR criterion is feasible to build optimal Bayes 

classification procedure although it was also applied for hidden 

Markov model (HMM) training [10]. When surveying loss 

function in MBR classification, it was popular to use word error 

rate loss function measured by Levenshtein distance matching two 

strings in a fashion of dynamic programming [6]. Attractively, 

implementing MBR criterion was equivalent to finding a classifier 

with minimum word error rate. Word error minimization using N-

best list [14] and lattice [13] rescoring was implemented. Also, 

Wessel et al. [15] presented the time frame error rate loss function 

for fulfilling MBR classification. In general, the previous loss 

functions were deterministic and representative for measuring 

similarity between target string and hypothesis string. To realize a 

truly optimal Bayes decision for speech recognition, we present a 

novel Bayes loss function determined in statistical Bayesian 

viewpoint. We test the hypothesis of producing loss caused by a 

classification action. A Bayes factor [8][11] is accordingly 

calculated for loss measurement using the log predictive 

distribution ratio of null and alternative hypotheses. To distinguish 

different classifiers, here, MBR classification using Bayes loss 

function is referred as the optimal Bayes classification (OBC) 

because this classifier is carried out towards obeying optimal 

Bayes theories. Interestingly, we connect the relation between 

minimum classification error (MCE) [9] and OBC classifiers. In 

this manner, we illustrate the discriminative capability using OBC 

decision rule. From the experiments using Mandarin broadcast 

news speech database, we find that the proposed OBC obtains 

better LVCSR performance compared to MAP and conventional 

MBR classification. 

2. SURVEY OF DECISION RULES 
According to statistical PR theory, optimal Bayes decision rule is 

established through minimizing Bayes risk or expected loss. For 

the application of speech recognition, we minimize the expectation 

of loss associated with a decision )(Xd  if the true transcription of 

speech signal XX  is WW . Bayes risk is expressed by 
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OBC decision rule is constructed by minimizing overall risk, 

namely 
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In real-world implementation, we assume that (1) observation 

space X  is known, (2) true distributions of acoustic model 

)( WXP  and language model )(WP  are known and (3) loss 

function ))(,( XdWl  is given [12]. The resulting speech 

recognition performance is limited accordingly. To deal with the 

first issue, we can build the adaptive decision rule via decision 

parameter adaptation. Through adaptation of HMM  and n-gram 

 parameters, decision rule is adaptive to the unknown 

observation space. Also, when considering the second issue, the 

Bayesian predictive classification (BPC) [2][7] was exploited to 

achieve a robust decision where the uncertainties of parameters 

described by prior distributions )(P  and )(P  were averaged as 

follows 
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This BPC decision rule was better than conventional method where 

the estimated  and  were pretended to be true distribution 

parameters. In (3), the integrals in bracket )(
~

WXP  and )(
~

WP

are predictive distributions corresponding to acoustic and linguistic 

models. In this paper, we concern the third issue and present a 

novel loss function for OBC speech recognition. This serves as the 

most important issue to accomplish MBR or OBC decision rule. 

Traditionally, speech recognition systems adopt the empirical 

loss function determined from training data or simply use the zero-

one loss function 
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Namely, correct classification has no loss while different wrong 

classification is penalized with equal loss. For this case, OBC 

decision rule is reduced to MAP decision rule 

)()(maxarg)(maxargˆ)(MAP WPWXPXWPWXd
WW

,   (5) 

where the posterior distribution )( XWP  is maximized to find 

optimal word sequence Ŵ . Equivalently, we search the optimal 

solution with the highest acoustic )( WXP  and linguistic )(WP

scores.  However, the real-valued loss function ))(,( XdWl  should 

properly reflect the cost induced when a test utterance X  with 

true transcription W  is recognized as )(Xd . This cost can be 

measured from word segments of test data in an online 

unsupervised mode. Generally, the higher the word error rate is 

measured for a classification pair ))(,( XdW , the larger the 

penalty/cost should be assigned for accumulating Bayes risk. In 

[5][6], the word error rate (WER) loss function ))(,(WER XdWl

calculated by Levenshtein distance was developed for building 

MBR classification  
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Using WER loss function, N-best list or word lattice was rescored 

so as to improve LVCSR performance. Basically, previous loss 

functions were determined via performing dynamic programming 

of two hypothesis strings. No probabilistic models and parameters 

were considered in loss function calculation. To build a truly 

Bayesian framework, we are motivated to present a Bayes loss 

function for OBC decision. We are measuring the probabilistic 

similarity between target and hypothesis strings and coming up 

with a new OBC decision rule completely constructed using Bayes 

theory. 

3. OPTIMAL BAYES CLASSIFICATION 
Our goal aims at fulfilling optimal Bayes decision for LVCSR. 

Different from MBR speech recognition [5][6], we present a 

statistical loss function derived from hypothesis test theory using 

Bayesian approach. We are describing the robust and 

discriminative capabilities of applying proposed OBC decision 

rule. 

3.1. Test of Classification Loss 
The specification of loss function is crucial for optimal Bayes 

decision. Basically, whether the classification )(Xd  produces loss 

or not is referred as a two-class PR problem. To formulate the 

confidence or loss due to a classification action, we describe the 

mathematical model as a hypothesis test problem. According to the 

outcomes of loss and lossless classification events, null 0H  and 

alternative 1H  hypotheses are naturally defined by 

H0: test data X  is misclassified, or )(Xd  produces loss. 

H1: test data X  is not misclassified, or )(Xd  is lossless. 

From Neyman-Pearson’s Lemma, the optimal solution to 

hypothesis testing is called likelihood ratio test. Having probability 

distributions of two hypotheses, null hypothesis 0H  is accepted if 

likelihood ratio exceeds a critical threshold 
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However, we don’t know true distributions of null hypothesis 

))(,( 0HXdXP  and alternative hypothesis ))(,( 1HXdXP .

Implementation of loss function using likelihood ratio 

))(,(LR XdWl  shall be sensitive to the uncertainties of distribution 

forms and trained parameters. To setup a loss function robust to 

uncertainties of speech models, we present a novel Bayes loss 

function for OBC speech recognition. This function is built by 

solving hypothesis test problem using Bayesian approach [8][11] 

where model parameters },{  are random with prior 

distributions )(P  and )(P . A Bayes factor is yielded and 

expressed using predictive distributions )(
~

WXP  and )(
~
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In (8), the numerator sums up all joint predictive distributions 

))(,(
~

XdXP  corresponding to misclassification actions 

WXd )(  while the denominator involves only the predictive 
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distribution for the case of correct classification WXd )( . In 

LVCSR implementation, the word candidate with the highest 

predictive score is referred as true transcription W . The other 

competing word candidates at the same word segment are included 

in word set of null hypothesis WXd )( . These word candidates 

are found from word lattices produced by word graph generation 

algorithm. To determine an effective Bayes factor, we can 

empirically merge tuning factors when calculating predictive 

distributions for different competing words. Using this Bayes 

factor, we are able to develop a new parametric loss function better 

than conventional zero-one, confidence measure and word error 

rate loss functions. The resulting loss function is robust because 

predictive distributions are calculated to tackle randomness of 

trained model parameters. 

3.2. Bayes Loss Function 
In this study, word-level Bayes factor ))(,( XdWb  is further 

normalized to build Bayes loss function. Our considerations are 

twofold. First, loss function is involved in combining acoustic 

)( WXP  and linguistic )(WP  scores and rescoring the word 

lattices to obtain optimal word sequence for LVCSR. The value of 

loss function should be in a limited range to prevent deteriorating 

system performance. For the second reason, we are generating a 

perceptually meaningful loss function to connect the relation to 

MCE classifier. Therefore, we calculate the logarithmic Bayes 

factor and smooth the value in a range between zero and one using 

the sigmoid function, which is the most common form of 

activation function in construction of neural network. The Bayes 

loss function is formed by 

)))(,(logexp(1

1
)))(,(())(,(BF

XdWb
XdWblXdWl  (9) 

where  and  are two tuning parameters balancing the linearity 

and nonlinearity of activation function. Using this Bayes loss 

function, new OBC decision rule minimizing the expected Bayes 

loss function is established by 

WW WXd

XWPXdWlXd )())(,(minarg)( BF
)(
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We are finding the candidate word sequence WXd )(

producing the smallest Bayes risk. In what follows, we are 

illustrating the discriminability of using new OBC through 

connecting the relation to MCE classifier. 

3.3. Relation between OBC and MCE Classifiers
MCE is a popular model training approach for estimating 

discriminative acoustic models  [9]. This approach assumed that 

the model parameters estimated from training data Y  were fitted 

for recognizing unknown test data X . Given a specified 

discriminant function ),(Yg , the misclassification measure in 

MCE criterion is defined by 
/1

)(
)( ]),(exp[log),())(,(

WYd
YdW YgYgYdWm (11)

This measure is substituted into sigmoid function of (9) to obtain 

loss function )))(,(());(,(MCE YdWmlYdWl . MCE aims to 

fulfill optimal Bayes decision and estimate speech parameters via 

minimizing the expected loss 

)]);(,([minargˆ
MCE YdWlEY .                    (12) 

Notably, MCE minimizes the expected loss )]);(,([ MCE YdWlEY

of training data Y  for model training while OBC minimizes the 

expected Bayes loss ))](,([ BF),( XdWlE XW  of test data X  for 

building decision rule. In MCE, the expectation is done with 

respect to acoustic variable. But, in OBC, the expectation is 

performed with respect to acoustic and linguistic variables. 

Interestingly, if we apply MCE criterion in test phase and set 

discriminant function as a logarithm of predictive distribution
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we investigate that the logarithmic Bayes factor in OBC is 

equivalent to the misclassification measure with 1  in MCE as 

shown by 
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Attractively, we can interpret misclassification measure in MCE as 

a logarithmic Bayes factor or confidence measure for testing the 

hypothesis of misclassification action against that of correct 

classification action. Therefore, considering these properties, it is 

meaningful to claim that OBC decision rule can achieve 

discriminative classification because minimizing expected loss for 

OBC is comparable to minimizing classification errors or 

enhancing model discriminability. 

4. EXPERIMENTS 

4.1. Databases and Experimental Setup 
We carried out Bayes decision rules for broadcast news 

transcription. LVCSR decoder contained lexicon tree, acoustic 

model and language model. In lexicon set, we used 74,868 Chinese 

words. Each word had at most four characters. All words were 

organized in a tree structure for within-word search. Acoustic 

model set consisted of Initial/Final sub-syllable HMM’s for 

Mandarin speech recognition. Initial and Final HMM’s had three 

and five states, respectively. Each state had at most 32 Gaussian 

mixture components. We used 7080 utterances from TCC300 

speech database to train seed speaker independent HMM’s. Then, 

we performed MAP task adaptation for LVCSR of MATBN 

broadcast news corpus using 680 MATBN utterances (35.8 

minutes). In order to estimate the parameters in sigmoid function, 

loss function and language model weighting, we prepared 700 

utterances as the held-out set. Also, there were 500 test utterances 

(11 minutes) containing 4105 characters. MATBN were shared by 

the Public Television Service Foundation of Taiwan and collected 

by Academia Sinica, Taiwan. Each speech frame was 

parameterized as 39-dimensional feature vector of 12 Mel-

frequency cepstral coefficients (MFCC), one log energy and their 

first and second derivatives. Sentence-based cepstral mean 

subtraction was performed. Trigram language model was trained 

using CIRB corpus (about 342MB) via SRI language model toolkit. 

Good-Turing smoothing was applied. Language model perplexity 

was 437. We reported character error rate (CER) performance for 

different decision rules. In this study, we compared MAP, MBR 

and OBC decision rules. Different loss functions were incorporated 

in word graph rescoring. Word-conditioned tree copy search was 
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performed to build word graph. MAP decoding was referred as the 

baseline system. MBR with Levenshtein loss function was 

implemented for comparison. OBC decoding using Bayes loss 

function calculated with predictive distribution and with different 

priors were investigated. 

4.2. Implementation Issues
In OBC rule implementation, we only calculated predictive 

distribution ),(
~

WXP  considering the uncertainty of HMM 

mean vector . The other HMM parameters and trigram 

parameters were assumed to be deterministic. Prior density of 

HMM mean vector was modeled by a state-level tied Gaussian 

distribution ),()()( mNPP  with mean vector m  and 

covariance matrix . Predictive distribution was derived in a form 

of Gaussian distribution [3]. Here, hyperparameters ),(m  were 

empirically estimated from training data via taking sample mean 

and variance of maximum likelihood parameters. Similar 

technique was applied to determine those hyperparameters 

corresponding to competing words or null hypothesis WXd )( .

Also, we merged the exponential weighting factors in criterion 
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        (15)

We searched optimal factors in (9) and (15) using held-out data. 

Here, we fixed 0 in (9) and 8  in (15). By searching 

factors with minimum Bayes risk, we selected 1  and 9.0

in realization of OBC decoding and 6.1  for MBR decoding. In 

calculation of loss function using Bayes factor and Levenshtein 

distance, we considered at most twenty competing words for each 

word hypothesis. The lattice alignment procedure [13] was 

performed to determine word segments. Loss function was 

calculated within each word segment. 

4.3. Experimental Results 
Experimental results show that the baseline system using MAP 

decoding obtains CER of 39.8%. Using OBC, we investigated two 

kinds of priors to evaluate the effect on LVCSR performance. In 

PRIOR I, we performed MLLR adaptation of prior parameters 

from TCC300 corpus to broadcast news environments using task 

adaptation data. In PRIOR II, we further adapted these priors to the 

test speakers using held-out data. Using OBC with PRIOR I, we 

reduce CER to 38.2%. However, when adopting PRIOR II in OBC 

decision, CER is further reduced to 37.7% which is better than 

38.4% using Levenshtein loss function based MBR. These results 

indicate that OBC decision rule outperforms MAP decision and 

MBR decision. This reveals the superiority of using OBC decoding 

on broadcast news transcription task. Importantly, if we use the 

priors closer to test speakers/environments, the performance could 

be improved accordingly. We will continue investigating the 

effects of hyperparameters and the predictive densities considering 

model uncertainties of other HMM and n-gram parameters. 

5. SUMMARY 
We have surveyed a series of decision rules and proposed new 

OBC decision rule for broadcast news transcription. Through 

hypothesis test of classification loss, we developed a Bayes factor 

to measure the Bayes loss for building optimal Bayes decision rule. 

Using sigmoid function, we derived Bayes loss function for OBC 

decision. It was a complete Bayesian solution to building decision 

rule for LVCSR. Attractively, this OBC rule was robust and 

discriminative due to the incorporation of prediction density and 

the relation to MCE classification. Using logarithm of predictive 

distribution as discriminant function, the logarithmic Bayes factor 

in OBC was equivalent to misclassification measure in MCE. Our 

experiments showed the superiority of OBC to other decision rules. 
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