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ABSTRACT 
 
In this paper we present a weighted likelihood ratio (WLR) 
based Hidden Markov Model and apply it to speech 
recognition in noise. The WLR measure emphasizes 
spectral peaks than valleys in comparing two given speech 
spectra. The measure is more consistent with human 
perception of speech formants where natural resonances of 
vocal track are and tends to be more robust to broad-band 
noise interferences than other measures. A complete HMM 
framework of this measure is derived and a mixture of 
exponential kernels is used to model the output probability 
density function. The new WLR-HMM is tested on the 
Aurora2 connected digits database in noise.  It shows more 
robust performance than the MFCC trained GMM baseline 
system. When combined with the dynamic cepstral 
features, the multiple-stream WLR-HMM shows a 39% 
relative improvement over the baseline system. 
 

1. INTRODUCTION 
 
As speech recognition is transferred from the laboratory to 
marketplace, robust recognition is becoming increasingly 
important and critical.  Among all kinds of the variabilities 
and mismatches such as speakers, accents and channels, 
background noise is one of the hardest problems and the 
most usual cases in real speech applications we face. It is 
why noise robust attracting lots of researchers’ interest.  

There are all kinds of algorithms to deal with it. 
Missing feature algorithm tries to extract features which 
are more invariant or insensitive to noises in spectro-
temporal regions as [5]. Ealey and etc. recover the 
underlying speech through making an improved estimate 
of noise spectrum by making fully use of the harmonic 
structure of the voiced speech spectrum [6].  Others 
include adding weights for different front-end according to 
their relative sensitiveness to noises [3].   

Weighted Likelihood Ratio (WLR) was first proposed 
in 1984 by Sugiyama [2] as a distortion measure when 
comparing two given speech spectra. More emphasis has 
been put to the peak part of the spectrum during the 
measuring. It is not only consistent with human perception, 
but also accordance with the fact the peak (formant) plays 
a more important role during the recognition. Especially it 
should be noted that peak part is much less polluted by 
noises.  It is successfully used for vowel classification and 
isolated word recognition based on DP. 

In this paper, we introduce the concept of the peak-
weighting and extend WLR in following aspects: 
1. Replacing LPCC in [2] with MFCC and deriving 

MFCC based WLR since MFCC is widely confirmed 
by researchers that it is more effective than LPCC in 
recognition. 

2. Instead of DP and codebooks used in [2], we derive 
WLR-based HMM and make it seamlessly combined 
with state-of-the-art HMM framework.  

3. According to [3], dynamic spectral information of 
MFCC are more robust to noise than static one, we 
combine WLR-HMM with conventional HMM based 
on dynamic-MFCC through a two-stream HMM.  

In Section 2, a complete HMM framework based on 
WLR measure is derived. In Section 3, we evaluate the 
proposed 2-stream WLR-HMM on the Aurora2 database 
and analyze the results.  Conclusion is given in Section 4. 
 
 

 2. WLR-HMM 
 
In this section, we will first review the basic idea of WLR 
and show why it is more suitable for speech recognition in 
noise. Then we will describe the procedure of building 
MFCC-based WLR and then derive the WLR-HMM 
framework.  Finally we will introduce a two-stream HMM 
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system that combining WLR-HMM and conventional 
HMM based on dynamic MFCC. 
 
2.1. WLR 
 
The WLR measure emphasizes the spectral peaks than 
valleys in comparing two given speech spectra.  This 
measure is more consistent with human perception of 
speech formants where natural resonances of vocal track 
are and tends to be more robust to noise interferences than 
other measures where no emphasis is placed on the 
spectral peaks. Since in terms of local (in frequency) SNR, 
the peak parts of spectrum are less polluted by noises. It 
can be illustrated by Figure 1, where topper part is the 
linear power spectra and the bottom part is the 
corresponding log spectra. Blue (real), red (dash) and 
green (bar) represent clean, noisy (SNR=5dB) spectra and 
their differences respectively. Usual cepstrum distortion is 
shown by the green (bar) of bottom figure and the main 
differences are due to the valley parts which are tender to 
be affected by noises. According to WLR, which weights 
log spectral difference with the linear spectral difference, 
the distortion becomes much less. It is what we expected. 
In other word, difference in valley parts which are less 
reliable is de-emphasized and that in peak parts which are 
more reliable is emphasized.  

 

Figure 1: Illustration of WLR 

WLR can be formulated by (2.1) where in integrands, 

)(log)(log wSwS rt − is the difference between two 

log spectra: test spectrum )(log wSt  and reference 

spectrum )(log wSr . )()( wSwS rt − , the difference 

between the corresponding linear spectra, is used as the 
weighting function.  

 
 
 

According to Passeval’s theorem, WLR spectral distortion 
can be re-formulated as (2.2) 

 
 
 

 

Here )(irt and )(ict  are the autocorrelation and cepstral 

coefficients of the test spectrum, respectively. Same is true 
for reference spectrum.  It should be noted that weighting 
function should satisfy (2.3). In other word, the 0th 

coefficients of )(irt  and )(irr  are constrained to unity 

power, or 1. 

 
 
 
 

2.2. MFCC based WLR 
 
It is reported Mel-frequency cepstrum coefficients (MFCC) 
are more effective and more robust for speech recognition  

Figure 2: Block diagram of extracting the weighting 
function (Autocorrelation coefficients) from MFCC 

than linear prediction cepstral coefficients (LPCC) and 
widely used by current state-of-the-art recognizers.  
Therefore, we have implemented MFCC-derived WLR: 
Cepstra used in (2.2) is MFCC instead of LPCC. Here the 
Arithmetical mean of MFCC is used to approximate the 
centroids of the WLR-based measure although it is not 
exactly true by strict definition of the measure. Given the 
MFCC, we can derive the corresponding weighting 
function: autocorrelation coefficients by following these 
steps described in Figure 2. 
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2.3. WLR-HMM 
 
It is obvious to verify the WLR distortion values are non-
negative from (2.1) since log function is monotonic and 
thus the difference of linear spectra has the same +/- sign 
as the corresponding parts of log spectra in the integrand, 
and therefore the integrand is semi-positive. A mixture of 
exponential kernels can be used to model the output 
probability density function (pdf) as shown in (2.4) and as 
a whole it is called WLR-HMM. 
 
 

 

Here, ,to  is the observation vector consisting of )(irt  

and )(ict , and jku is the mean vector  and jkβ is the 

inverse mean of the WLR distortion of the j-th state and k-

th component. And jkw is the weighing coefficient of k-th 

component for j-th state. In practice, pdf can also be 
realized as (2.5) form. 

)5.2())}(*exp({max)( ,
..2,1
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=

The 

auxiliary Q-function for WLR-HMM density can be 
written as: 

 
 
 

By taking the partial derivative of right side of (2.5) regard 

to each parameter and let them equal to 0, the updated jkβ , 

centroids and kernel weights are derived and given as: 
 
 
 
 
 
 
  
 
 
 

Where, )(tjkψ   is an indicator function which is 1 if  to  

is associated with the k-th component of the j-th state and 
is zero otherwise. 
 
2.4. 2-stream WLR-HMM 
 
According to Yang’s work [3], dynamic cepstral features 
play more important roles especially for noisy speech 
recognition. As we know, WLR-HMM can help improve 
the noise robustness of static MFCC by more robust 
distortion measure as it will be shown by experiments in 
the next section.  The simple way to improve the 
performance further is to merge them together.  It can be 

formulated by (2.10) which integrate them by two-stream 
in the level of computing the likelihood scores. Weighting 
coefficients 1γ and 2γ are used to reflect the relative 
importance and normalize the different dynamic ranges of 
scores from these two streams,  
 
 
 
 
 
The weighting coefficients can be learnt through limited 
development set and they are tuned experimentally now. 
 

3. RESULTS 
 
3.1. Experimental Setups 
 
Throughout the paper, Aurora2 database are used for the 
evaluations. Only clean data are used for both baseline and 
WLR-HMM model training.  Testing set include A, B and 
C. During the training and testing, only male data are used 
for both baseline and WLR-HMM model. For the baseline, 
model training is full consistent with the standard recipe 
described in [1], including the number of states per word, 
components per state, iteration procedure and so on.  

For WLR-HMM, only 13 order of MFCC (including 
C0) are used.  No cepstral lifter is used when extracting 
MFCC to satisfy (2.2). C0 is not practically used for 

WLR-HMM since corresponding 1)0()0( == rt rr . 

All the number shown in the following tables are the 
average of the accuracy from 0dB to 20dB except that 
stated explicitly. 
 
3.2. WLR-HMM based only Static Features  
 
First we evaluated WLR-HMM performance based on 
static cepstral features of MFCC only. Configuration 
MFCC-S in Table 1 means only MFCC-E front-end (13d) 
is used in standard Aurora2 training procedure.  WLR-Init 
in Table 1 means the initial WLR-HMM is directly 
computed from the model of MFCC-S. With several more 
iterations of WLR-HMM training, we obtained final 
WLR-HMM model sets (WLR-HMM at Table 1).  Table 2 
shows the comparison results.  

Table 1:  WLR-HMM vs. conventional HMM based on 
static MFCC only (Testing set A with clean training set) 

Accuracy Subway Babble Car Exhibition Overall 
MFCC-S 36.37 41.77 39.59 38.61 39.08 
WLR-Init 47.40 42.09 54.86 53.73 49.52 
WLR-HMM 53.80 50.89 58.78 55.86 54.83 
Relative 
Improvement 27% 16% 32% 28% 26% 
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It shows that only static feature, WLR-HMM can 
improve the performance. The comparatively less 
improvement on babble noise is probably due to speech-
like characteristic of this kind of noise which is also 
emphasized with speech, especially for pure noise 
segments like the beginning and the ending of utterances.   

 
3.3. WLR-HMM with Dynamic MFCC 
 
Based on studies in [3], dynamic cepstral feature is more 
robust in noise than static one.  2-stream WLR-HMM is 
then built to combine WLR-HMM and conventional 
dynamic MFCC based HMM as described in section 2.4. 
Weighting coefficients of the two streams are tuned 
experimentally. 

 Table 2: Summary of comparisons between 2-stream 
WLR-HMM and baseline (39d MFCC): 

Overall results are summarized in Table 2 and more 
details are given in Table 3. 2-stream WLR-HMM greatly 
improves the noise robustness although its performance 
still varies from noise to noise.  

It is very interesting that among the 8 noises, WLR-
HMM achieved relatively smaller improvements on 
subway, exhibition and street noises. While we 
investigated the corresponding noise spectra given by [1], 
they show peak-like characteristics like speech.  Especially 
for subway and exhibition noises, they are emphasized 
similarly as speech spectral peaks by WLR-HMM at the 
same time.  

4. CONCLUSIONS AND DISCUSSIONS 
 
A complete HMM framework based on WLR measure, 
called WLR-HMM is proposed in the paper. After 
combining with dynamic cepstral features, multiple-stream 
WLR-HMM show 39% relative improvement over the 
baseline system. As a measure that is more consistent with 
human perception of speech formants, WLR-HMM shows 
experimentally more robust recognition performance than 
the standard MFCC baseline system in noise. No noise 
estimation is needed for the WLR-HMM. 

 WLR-HMM are not as effective for lower amplitude, 
unvoiced sound like fricatives or broadband noises where 
no distinctive formant-like spectral peaks exist. A further 
rescoring with WLR-HMM on the lattice decoded with the 
baseline may be a better alternative.  
 

5. REFERENCES 
 

[1]  Hams-Gunter Hirsch and David Pearce, “The Aurora 
Experimental Framework for the Performance Evaluation of 
Speech Recognition System under Noisy Conditions”, Proc. 
of ISCA-ITRW ASR2000, pp.181-188, Sept. 2000. 
[2] Masahide SUGIYAMA, “LPC Spectral Matching 

Measures for Speech Recognition”, Ph.D. dissertation, 
Tohoku Univ., Aug.1984.  
[3] Chen Yang, Frank S. Soong and Tan Lee, “Static and 

sDynamic Spectral Features: Their Noise Robustness and 
Optimal Weights for ASR”, ICASSP2005, Philadelphia, USA.  
[4] The HTK Toolkit: http://htk.eng.cam.ac.uk. 
[5] Martin Cooke, Phil Green, Ljubomir Josifovski and 

Ascension Vizinho, “Robust Automatic Speech Recognition 
with Missing and Unreliable Acoustic Data”, Speech 
Communication 34 (2001) pp. 267-285.  
[6] Douglas Ealey, Holly Kelleher and David Pearce, 

“Harmonic Tunneling: Tracking Non-station Noises during 
Speech”, Eurospech’2001, Demark.  

 

Table 3: Results from two-stream WLR-HMM on Aurora2 with clean training (RR-WER in last row means the relative 
reduction of WER of 2 stream WLR-HMM compared with the baseline). 

Accuracy Set A Set B Set C Overall 

MFCC(39d) 61.38 57.50 68.19 62.36 

WLR-HMM 76.40 78.44 75.77 76.87 
Relative 
Improvement 39% 49% 24% 39% 

Aurora 2 Clean Training - Results 

A B C 

 Subway Babble Car Exhibition Aver. Restaurant Street Airport Station Aver. 
Subway 

MIRS 
Street 
MIRS 

Aver. 

SNR-5 16.61 15.56 10.71 11.31 13.55 12.41 15.00 18.00 13.95 14.84 15.95 17.17 16.56 

SNR0 35.91 37.71 30.68 32.43 34.18 37.71 39.39 45.16 37.52 39.95 35.85 37.21 36.53 

SNR5 66.97 71.69 66.33 64.49 67.37 69.84 71.50 73.98 68.95 71.07 62.77 67.58 65.18 

SNR10 86.99 89.48 88.52 85.98 87.74 87.83 88.80 90.55 89.82 89.25 83.03 87.55 85.29 

SNR15 94.54 95.40 96.29 94.78 95.25 93.76 96.27 95.16 95.10 95.07 93.65 95.02 94.34 

SNR20 97.18 97.82 97.97 96.92 97.47 97.18 97.26 96.17 96.92 96.88 97.18 97.82 97.50 

Clean 98.20 98.32 98.39 97.67 98.15 98.20 98.32 98.39 97.67 98.15 98.14 98.26 98.20 

Aver. 76.32 78.42 75.96 74.92 76.40 77.26 78.64 80.20 77.66 78.44 74.50 77.04 75.77 

Baseline 70.29 49.37 59.68 66.17 61.38 54.31 65.75 53.2 56.75 57.50 65.92 70.45 68.19 

RR-WER  20% 57% 40% 26% 39% 50% 38% 58% 48% 49% 25% 22% 24% 
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