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ABSTRACT
In hidden Markov models (HMMs), state duration probabili-
ties decrease exponentially with time. It would be inappro-
priate representation of temporal structure of speech. One
of the solutions for this problem is integrating state duration
probability distributions explicitly into the HMM. This form
is known as a hidden semi-Markov model (HSMM) [1]. Al-
though a number of attempts to use explicit duration models
in speech recognition systems have been proposed, they are
not consistent because various approximations were used in
both training and decoding.

In the present paper, a fully consistent speech recogni-
tion system based on the HSMM framework is proposed. In
a speaker-dependent continuous speech recognition experi-
ment, HSMM-based speech recognition system achieved about
5.9% relative error reduction over the corresponding HMM-
based one.

1. INTRODUCTION

Hidden Markov models (Fig. 1(a)) have formed the basis for
many speech recognition systems since 1970’s. The advan-
tages of using the HMM are that i) it can represent speech
as probability distributions, ii) it is robust, iii) efficient algo-
rithms for estimating its model parameters are provided.

However, a number of limitations of the HMM for mod-
eling speech have been reported [2]. One of the major lim-
itations is its duration modeling. In the HMM, state dura-
tion probabilities are implicitly modeled by its state transition
probabilities: state duration probabilities decrease exponen-
tially with time. This would be inappropriate representation
of temporal structure of speech.

One of the solutions for this problem is to integrate state
duration probability distributions explicitly into the HMM.
This model is known as a hidden semi-Markov model (HSMM)
which is illustrated in Fig. 1(b). Although a variety of at-
tempts to include the explicit duration models in speech recog-
nition system have been reported [3, 4], they are not consistent
because various approximations listed below were used both
in training and decoding:

a) State duration probability distributions were estimated from
statistics calculated by the forward-backward algorithm
of the HMM, not of the HSMM [5].

(a) hidden Markov model (HMM)

(b) hidden semi-Markov model (HSMM)
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Fig. 1. Examples of an HMM and HSMM with 3-state left-
to-right with no skip structures.

b) Context-independent model or context dependent param-
eter tying structure of state output probability distribu-
tions was used [3].

c) State duration models were not used in decoding process.
Rescoring of N-best hypotheses generated by the HMMs
using the HSMM likelihood was performed [4].

In the present paper, we avoid the above approximations and
construct a fully consistent HSMM-based speech recognition
system. For approximation a), both state output and duration
probability distributions are estimated based on the HSMM
statistics calculated by the generalized forward-backward al-
gorithm [1, 2]. For b), state output and duration probability
distributions are individually clustered by phonetic decision
trees [6]. For c), a speech decoder for the HSMM is con-
structed using Weighted Finite-State Transducers (WFSTs).

The rest of the present paper is organized as follows. Sec-
tion 2 describes training algorithms for the HSMM. Section 3
shows context clustering for state duration probability distri-
butions. Section 4 presents a speech decoder for the HSMM
using the WFSTs. Results of a speech recognition experiment
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is shown in Section 5. Finally, concluding remarks and future
plans are presented in Section 6.

2. HIDDEN SEMI MARKOV MODEL

2.1. Generalized forward-backward algorithm

The output probability of an observation vector sequence o
from an HSMM Λ can be computed efficiently using the gen-
eralized forward-backward algorithm [1, 2]. The partial for-
ward probabilities αt(·) and partial backward probabilities βt(·)
are defined as follows:

α0( j) = π j, (1)

αt( j) = P (o1, . . . , ot, qt = j | qt+1 � j,Λ)

=

t∑

d=1

N∑

i=1,
i� j

αt−d(i)ai j p j(d)
t∏

s=t−d+1
b j(os), (2)

βT (i) = 1, (3)

βt(i) = P (ot+1, . . . , oT , qt = i | qt+1 � i,Λ)

=

T−t∑

d=1

N∑

j=1,
j�i

ai j p j(d)
t+d∏

s=t+1

b j(os)βt+d( j), (4)

where ai j, b j(ot), N, p j(d), and π j are a state transition proba-
bility from the i-th state to the j-th state, a state output proba-
bility of an observation vector ot from the j-th state, the total
number of states, a state duration probability of the j-th state,
and an initial state probability of the j-th state, respectively.
From the above equations, the output probability of the obser-
vation vector sequence o = {o1, ..., oT } from the HSMM Λ is
given by

P (o | Λ) =
N∑

i=1

N∑

j=1,
j�i

t∑

d=1

αt−d(i)ai j p j(d)
t∏

s=t−d+1
b j(os)βt( j). (5)

2.2. Parameter reestimation formulas

In the present paper, we assume that each state output prob-
ability b(·) is represented by a mixture of Gaussian distribu-
tions. Parameter reestimation formulas of the mixture weight
wjg, mean vector µ jg and covariance matrix Σ jg of the g-th
mixture of the j-th state are given by

wjg =

T∑

t=1

t∑

d=1

γdt ( j, g)

G∑

h=1

T∑

t=1

t∑

d=1

γdt ( j, h)

, (6)

µ jg =

T∑

t=1

t∑

d=1

ζdt ( j, g)

T∑

t=1

t∑

d=1

γdt ( j, g)

, (7)

Σ jg =

T∑

t=1

t∑

d=1

ηdt ( j, g)

T∑

t=1

t∑

d=1

γdt ( j, g)

, (8)

respectively, where G is the number of Gaussian distributions,
γdt ( j, g), ζdt ( j, g) and ηdt ( j, g) are occupancy probability, first
and second order statistics, which are calculates as

γdt ( j, g) =
1

P(o | Λ)

N∑

i=1

αt−d(i)ai j p j(d)βt( j)

t∑

s=t−d+1
wjgN(os | µ jg,Σ jg)

t∏

k=t−d+1,
k�s

b j(ok), (9)

ζdt ( j, g) =
1

P(o | Λ)

N∑

i=1

αt−d(i)ai j p j(d)βt( j)

t∑

s=t−d+1
wjgN(os | µ jg,Σ jg)

t∏

k=t−d+1,
k�s

b j(ok)os, (10)

ηdt ( j, g) =
1

P(o | Λ)

N∑

i=1

αt−d(i)ai j p j(d)βt( j)

t∑

s=t−d+1
wjgN(os | µ jg,Σ jg)

t∏

k=t−d+1,
k�s

b j(ok)[os − µ jg][os − µ jg]
�, (11)

respectively.
The state duration probability distribution of the j-th state

is modeled by a single Gaussian distribution with mean ξ j

and variance σ2
j i.e. p j(d j) = N(d j | ξ j, σ

2
j) . Although a

gamma distribution could be used , a Gaussian distribution is
used in the present paper. The reestimation formulas of these
parameters are given as follows:

ξ j =

T∑

t0=1

T∑

t1=t0

χt0,t1 ( j)(t1 − t0 + 1)

T∑

t0=1

T∑

t1=t0

χt0,t1 ( j)

, (12)
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Fig. 2. Context clustering that separate state duration proba-
bility distributions from HMM parameters.

σ2
j =

T∑

t0=1

T∑

t1=t0

χt0,t1 ( j)(t1 − t0 + 1)2

T∑

t0=1

T∑

t1=t0

χt0,t1 ( j)

− (ξ j)
2, (13)

where

χt0,t1 ( j) =
1

P(o | Λ)

∑

i� j

αt0−1(i)ai j

t1∏

s=t0

b j(os)p j(t1−t0+1)βt1 ( j).

(14)

3. CONTEXT DEPENDENT DURATION MODELING

In the conventional speech recognition system using explicit
duration models, context-independent duration model or the
same parameter tying structure that of state output probabil-
ity distributions was used [3]. However, it is generally con-
sidered that state output and duration probability distributions
have different context-dependency. In the present paper, we
adopt context-dependent duration modeling technique used
in the HMM-based speech synthesis [5]. The state duration
probabilities of the each HSMM are modeled by single multi-
variate Gaussian distributions whose dimensionality is equal
to the number of states of the HSMM. State output and dura-
tion probability distributions are context-dependent and they
are clustered separately by the phonetic dicision trees [6] (Fig. 2).

4. WEIGHTED FINITE-STATE TRANSDUCERS FOR
SPEECH RECOGNITION

Finite-state machines have been used in many areas of com-
putational linguistics. These transducers appear as very inter-
esting in speech processing. Weighted finite-state transducers
associate weights such as probabilities, duration, penalties,
or any other quantity that accumulates linearly along paths,
to each pair of input and output symbol sequences. It of-
fers a unified framework representing various model used in
speech and language processing [7, 8]. An integrated WFST
for speech recognition can be represented as
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(a) WFST for state transition of an HMM

(a) WFST for state transition of an HSMM

Fig. 3. WFST for state transition of HMM and HSMM.

H ◦C ◦ L ◦G, (15)

where H, C, L, and G are WFSTs for a state transitions net-
work, a context-dependent model mapping, a pronunciation
lexicon, and a language model, respectively.

Advantages of using WFSTs for speech decoder are as
follows:

• It offers combining component individually designed.

• Each component can be individually optimized.

• The decoder offer easy managing, because network and
decoder are constructed individually.

However, in the case of using a large model or an huge trans-
ducer is usually generated by composing all the components.
Accordingly, both the amount of computation and the mem-
ory usage in decoding increase even if the WFST is opti-
mized. To avoid this problem, the on-the-fly composition [9,
10] is applied. In the on-the-fly composition, the set of WF-
STs are separated into two or more groups, and in each groups
on WFST is composed and optimized. Composition between
the groups is performed during decoding if necessary. For
example, Fig. 3 represent state transition of an HMM and an
HSMM represented by WFSTs. All arcs of Fig. 3(a), and
Fig. 3(b) are weighted by state transition probabilities, and
state duration probabilities. The state duration in Fig. 3(b)
is limited, because infinite state duration are not allowed in
WFSTs.

5. EXPERIMENTS

To evaluate the peformance of HSMM-based ASR system,
a speaker-dependent continuous speech recognition experi-
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Fig. 4. Experimental results.

ment was conducted on the ATR Japanese speech database
(phonetically-balanced sentences). Four handred and fifty sen-
tences spoken by a male speaker MHT were used for training.
The test data consists of a total of 53 utterances from the same
speaker that are not included in the training data.

The speech data was down-sampled from 20kHz to 16kHz,
windowed at a 5-ms frame rate using a 25-ms Blackman win-
dow, and parameterized into 24 mel-cepstral coefficients with
a mel-cepstral analysis technique. Static coefficients includ-
ing the zero-th coefficients and their first and second deriva-
tives were used as feature parameters. Three-state left-to-right
structures were used and 118 questions about left and right
phonetic contexts were prepared in decision tree construction.
Each state output probability distribution was modeled by a
single Gaussian distribution with a diagonal covariance ma-
trix.

The phonetic decision tree-based context clustering [6]
was applied for state output and duration probability distri-
butions separately. The MDL criterion was used for stopping
tree growth [11]. We changed the weight for penalty term of c
Eq. (9) in [11] and constructed acoustic models with the var-
ious number of parameters. The same weight c was used for
clustering both state output and duration probability distribu-
tions. Thus, the number of state duration probability distri-
butions has changed according to the number of state output
probability distributions. To evaluate the effect of context-
dependency of the state duration probability distributions, we
also constructed HSMMs with context-independent state du-
ration probability distributions. Figure 4 shows the experi-
mental results. Horizontal axis presents the number of state
output probability distributions, and vertical axis shows av-
erage phoneme accuracy. In this figure, HMM, HSMM(1),
HSMM(2) show HMM-based system, HSMM-based system
with triphone state duration probability distributions, and HSMM-
based system with monophone state duration probability dis-
tributions, respectively. The HSMM(1) achieved about 5.9%
error reduction over the HMM. Comparing HSMM(1) and
HSMM(2), Context dependency of state duration probability
distribution can be confirmed.

6. CONCLUSIONS

In the present paper, we constructed a fully consistent HSMM-
based speech recognition system , and evaluted its perfor-
mance while avoiding several approximations. As the result,
obvious improvement of phoneme accuracy was confirmed
by modeling state duration probability distribution with con-
text dependence. Future work includes evaluations on large
vocabulary continuous speech recognition tasks
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