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ABSTRACT

In this paper, we present initial investigations towards boosting pos-

terior probability based speech recognition systems by estimating

more informative posteriors taking into account acoustic context
(e.g., the whole utterance), as well as possible prior information

(such as phonetic and lexical knowledge). These posteriors are esti-

mated based on HMM state posterior probability definition (typically

used in standard HMMs training). This approach provides a new,
principled, theoretical framework for hierarchical estimation/use of

more informative posteriors integrating appropriate context and prior

knowledge. In the present work, we used the resulting posteriors

as local scores for decoding. On the OGI numbers database, this
resulted in significant performance improvement, compared to us-

ing MLP estimated posteriors for decoding (hybrid HMM/ANN ap-

proach) for clean and more specially for noisy speech. The system is

also shown to be much less sensitive to tuning factors (such as phone
deletion penalty, language model scaling) compared to the standard

HMM/ANN and HMM/GMM systems, thus practically it does not

need to be tuned to achieve the best possible performance.

1. INTRODUCTION

Posterior probabilities have been mainly used either as local scores

(measures) or as features in speech recognition systems. Hybrid
Hidden Markov Model / Artificial Neural Network (HMM/ANN)

approaches [1] were among the first ones to use posterior probabil-

ities as local scores. In these approaches, ANNs (and more specifi-

cally Multi-Layer Perceptrons, MLPs) are used to estimate the emis-
sion probabilities required in HMM systems. Hybrid HMM/ANN

method allows for discriminant training, as well as the possibility of

using small acoustic context by presenting a few number of frames

at MLP input. Posterior probabilities have also been used as local
scores for word lattice rescoring [2], beam search pruning [3] and

confidence measures estimation [4]. Regarding the use of poste-

rior probabilities as features, the most successful approach is Tan-

dem [5]. In Tandem, MLP estimated posteriors are used as input
features for a standard HMM/GMM configuration. Tandem takes

the advantage of discriminative acoustic model training, as well as

being able to use the techniques developed for standard HMM sys-

tems.

In both hybrid HMM/ANN and Tandem approaches, posteriors

are estimated based only on the information in local frame or a lim-
ited number of local frames. In [6, 7], a method was presented to

estimate more informative posteriors based on HMM state posterior

probability definition (usually used in HMMs training) to estimate

posteriors taking into account all acoustic information available in
each utterance, as well as prior knowledge, possibly formulated in

terms of HMM topological constraints. This approach provides a
new, principled, theoretical framework for hierarchical estimation,

integration and use of more informative posteriors, from the frame

level up to the phone and word levels. They investigated the es-

timation and usage of these posteriors as features for a standard
HMM/GMM layer. Such an approach was shown to yield significant

performance improvement over Tandem approach on Numbers’95

and on a reduced vocabulary version of the DARPA Conversational

Telephone Speech-to-text (CTS) task. In [8], these new posteriors

were used as local scores for decoding and the resulting system was
favorably compared with a standard HMM/GMM system.

In the present paper, we continue investigating the estimation

and use of these more informative posteriors as scores for decoding.
However, compared to the previous work [8], here we compare the

new posteriors with MLP estimated posteriors, and explore some ad-

ditional new aspects of the system such as sensitivity and stability to

tuning, as well as the behavior and more efficiency of the method
when there is a lack of clear acoustic information (noisy speech).

In our system, the new more informative posteriors are estimated

from MLP estimated posteriors by introducing prior and contextual

knowledge. We then use these more informative posteriors for de-
coding. Therefore, comparing with hybrid HMM/ANN approach

which uses MLP estimated posteriors for decoding, we use more in-

formative posteriors for decoding. We have shown that these poste-

riors perform significantly better than MLP estimated posteriors for
decoding (hybrid HMM/ANN approach) for clean and noisy speech.

We also show that the relative improvement is higher for more noisy

speech. Since some acoustic information are lost in noisy speech, the

role of integrating prior knowledge in getting more informative pos-
teriors is more evident. It confirms that integration of prior knowl-

edge can compensate the lack of clear acoustic information. The

resulting system is also much less sensitive to tuning factors (such

as phone deletion penalty, language model scaling), which are usu-

ally required in standard HMM/ANN or HMM/GMM systems for
numerical compensation during decoding. Therefore, practically it

does not need to be tuned to reach the best possible performance.

In the present paper, Section 2 shows how posterior probabilities
can be estimated to capture the whole context and prior knowledge.

Section 3 explains decoding and the complete recognition system

using these posteriors. Experiments and results are presented in Sec-

tion 4. Conclusions and future work plans are discussed in Section 5.

2. INTEGRATING PRIOR AND CONTEXTUAL
INFORMATION IN POSTERIOR ESTIMATION

In this section, we study how more informative posteriors can be es-
timated by integrating possible prior knowledge, as well as acoustic
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context information (e.g., using the whole utterance). The basic idea

as studied in [6, 7, 8] is to estimate posteriors based on HMM state

posterior probability definition (as usually used in HMMs training).
According to the standard HMM formalism, this posterior is defined

as the probability of being in state i at time t, given the whole obser-

vation sequence x1:T and model M encoding specific prior knowl-

edge (topological/temporal constraints):

γ(i, t|M) = p(qi
t|x1:T , M) (1)

where, xt is a feature vector at time t, x1:T = {x1, . . . , xT } is an

acoustic observation sequence, qt is the HMM state at time t, which
value can range from 1 to Nq (total number of HMM states), and qi

t

shows the event “qt = i”. In the following, we will drop the M ,

keeping in mind that all recursions are processed through some prior

(Markov) model M . We call γ(i, t) as “state gamma posterior” or
simply “state gamma”.

The state gammas γ(i, t) can be estimated by using forward α

and backward β recursions (as referred to in HMM formalism) [9]

using local emission likelihoods p(xt|q
t
i ) (e.g., modeled by GMMs):

α(i, t) = p(x1:t, q
i
t)

= p(xt|q
i
t)

X

j

p(qi
t|q

j
t−1)α(j, t − 1) (2)

β(i, t) = p(xt+1:T |q
i
t)

=
X

j

p(xt+1|q
j
t+1)p(qj

t+1|q
i
t)β(j, t + 1) (3)

thus yielding the estimate of p(qi
t|x1:T ):

γ(i, t) = p(qi
t|x1:T ) =

α(i, t)β(i, t)P
j
α(j, T )

(4)

Similar recursions, also yielding “state gammas”, can be devel-

oped for local posterior based systems such as hybrid HMM/ANN

systems using MLPs to estimate HMM emission probabilities [1].

The estimated state gammas can then be used to estimate phone
posteriors or higher level posteriors. We call these phone posteriors

as “phone gammas” γp(i, t), which can be expressed in terms of

state gammas γ(i, t) as follows:

γp(i, t) = p(pi
t|x1:T ) =

NqX

j=1

p(pi
t, q

j
t |x1:T ) (5)

=

NqX

j=1

p(pi
t|q

j
t , x1:T )p(qj

t |x1:T ) (6)

=

NqX

j=1

p(pi
t|q

j
t , x1:T )γ(j, t) (7)

where pt is a phone at time t and pi
t represents the event “pt = i”.

Probability p(pi
t|q

j
t , x1:T ) represents the probability of being in a

given phone i at time t knowing to be in the state j at time t. If there
is no parameter sharing between phones, this is deterministic and

equal to 1 or 0. Otherwise, this can be estimated from the training

data. In this work, we assume that there is no parameter sharing

between phones, thus a phone gamma is estimated by adding up all
state gammas associated with the phone in the whole model.

Although in this paper we only study phone level posteriors,

this posterior estimation/integration approach provides a theoretical

framework for hierarchical estimation, integration and use of poste-
riors, from the frame level up to the phone and word levels. Word

gammas can be estimated basically in the same way as state gammas

are integrated into phone gammas. The ultimate goal is to build a

hierarchical processing system, in which each layer enhances the es-
timation of posteriors coming from the previous layer by introducing

appropriate prior knowledge, context or even auxiliary information.

The HMM layer used for gamma posterior estimation can have

different topologies, thus encoding different types of prior knowl-

edge. As the simplest case, we can model each phone with a mini-

mum number of states and connect phone models with ergodic uni-

form transition probabilities. In this case, only the prior knowledge
about minimum duration of phones is introduced in the posterior es-

timation. We can do one more step and use real estimated phone

transitions instead of ergodic transitions between phone models. In

this case, we can also introduce some phonetic prior knowledge. Fi-
nally, we can have a fully constrained model composed of connected

word models made by phone models, and each phone modeled by

a minimum number of states. The parameters of this model are es-

timated from the training set. This topology can integrate phonetic
and lexical knowledge in the posterior estimation.

3. DECODING AND RECOGNITION

Decoding is performed by a Viterbi decoder (NOWAY decoder [10])

using phone gammas as local scores. For each phone, 3 states are
reserved in the decoder structure. Phone models belonging to each

word are connected to make words. Words are also connected based

on the language model. The local scores in the decoder are phone

gammas and the transition penalties between states are state, phone
or word transition probabilities.

The whole recognition system is composed of three layers which

are shown in Figure 1. The first layer is an MLP or GMM layer
which estimates initial evidences for phones in the form of posteriors

or likelihoods. The second Layer is a HMM layer which integrates

prior and contextual knowledge by using the initial evidences in for-

ward and backward HMM recursions (Eq. 2, 3) to get the estimate
of gamma state posteriors (Eq. 4). These state gamma posteriors are

integrated into phone gammas using Eq. 7, then they are used as lo-

cal scores in the last layer which is a decoding layer. Conceptually,

the second layer gets phone initial evidences as input and acts as a
corrective filter by introducing some context and prior knowledge.

The prior knowledge has been encoded in the topology of HMM in

this layer. The corrective filter suppresses the effect of evidences

not matching with prior knowledge or contextual information, and
magnifies the effect of evidences matching them. The output of this

corrective filter is more informative evidences in the form of posteri-

ors. The decoder makes decision about the word sequence based on

this more informative posteriors.

4. EXPERIMENTS AND RESULTS

In this section, we compare the gamma posteriors with MLP poste-

riors (for clean and noisy speech) to investigate the role of integrat-

ing prior and contextual information in estimating more informative
posteriors. We also compare and discuss the sensitivity of gamma

posterior based system and MLP posterior based system to tuning

factors (e.g. phone deletion penalty, scaling of the language model).

We did two sets of experiments to investigate different aspects

of our gamma posterior based system. In the first set of experiments,

we compare our system with the state-of-the-art hybrid HMM/ANN

method in which MLP estimated posteriors are used as scores for
decoding. The configuration of our system is the same as explained
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Fig. 1. The whole recognition system. First, initial phone evidences are estimated using GMMs or MLPs, then these evidences are used to
estimate gamma state posteriors through a HMM, which are then integrated into phone gammas. Finally, phone gammas are used as local
scores for decoding.

in Section 3. In this system, the MLP estimated initial posteriors

are used in HMM forward and backward recursions to get gamma

state posteriors. These more informative posteriors are then used as
scores, instead of MLP estimated posteriors for decoding. There-

fore, the difference between our system and the hybrid HMM/ANN

system is in the posteriors used for decoding. The former uses more

informative posteriors estimated from MLP posteriors by integrating
prior and contextual knowledge, while the latter uses directly MLP

estimated posteriors for decoding. For the experiments in this paper,

we used a fully constrained model (as explained in Section 2) to get

estimates of gamma posteriors. This means we integrate lexical and

phonetic knowledge in the posterior estimation. The decoder struc-
ture was explained in Section 3 and it is the same for both systems.

We used OGI Numbers’95 database for connected word recog-

nition task [11]. The training set contains 3330 utterances spoken

by different speakers. The test set contains 2250 utterances (8688
words). The vocabulary consists of 31 words with a single pro-

nunciation for each word. There are 27 context-independent phones

(monophones). The acoustic vector is the PLP cepstral coefficients

extracted from the speech signal using a window of 32 ms with a
shift of 12.5 ms. At each frame t, 13 PLP coefficients, their first and

second order derivatives are extracted resulting in 39 dimensional

acoustic vector. An MLP with 351 input nodes (9x39 vector, corre-

sponding to the concatenation of 9 frames of 39 dimensional acous-
tic vector) and 27 output units corresponding to the 27 monophones

were used to estimate initial posteriors.

Table 1 compares the performance of the two systems (gamma

based system and hybrid HMM/ANN system) for clean speech as
well as different levels of factory noise (the numbers appearing in

the second column inside brackets will be explained in the next para-

graph). It is clear that the decoder which uses gamma posteriors per-

forms significantly better than the one which uses MLP estimated

posteriors (hybrid method) 1. It is also interesting to observe that the
relative improvement increases by increasing the noise level. This

implies that integrating prior and contextual knowledge can be even

more useful when there is no clear acoustic information, because it

provides extra knowledge which can compensate the lack of acoustic
information.

The second set of experiments compares the sensitivity of the

two mentioned systems to tuning factors (e.g. phone deletion penalty).

Phone deletion penalty (or word deletion penalty which comes from
the same idea) is a tuning factor and an engineering trick which is

used for numerical compensation of scores for different paths dur-

1Better performances can even be obtained if context-dependent phone
(triphone) posteriors are estimated instead of monophone posteriors [8], but
training MLP for triphones is computationally expensive (particularly for
larger databases) and it will not lead to new conclusions.

Table 1. Comparing word recognition performance (in %) after de-
coding, for MLP estimated posteriors and gamma posteriors

Noise MLP Gamma Relative
level posterior posterior improvement

Clean 86.6 (90.0) 90.8 4.8

SNR 12 79.0 (82.3) 84.5 7.0

SNR 6 65.5 (70.4) 74.1 13.0

SNR 0 42.8 (49.1) 52.7 23.0

ing decoding [12]. It can significantly affect the recognition per-

formance of standard HMM/ANN and HMM/GMM systems2. In

order to compare the sensitivity of the systems, we vary the phone
deletion penalty value in the decoder and observe the change of per-

formance for two systems. Figure 2 shows the results. Comparing

the two curves, we can conclude that the gamma based system is

much less sensitive to tuning than the standard hybrid HMM/ANN
system. It can be explained by the fact that gamma posteriors tend

to have very close to binary values (like a decision) because they

are estimated by integrating some extra knowledge, while the MLP

posteriors can change more smoothly between 0 and 1, thus the accu-

mulated scores obtained by gamma posteriors during decoding tend
to be discrete while it is continuous for the case of MLP posteri-

ors. Tuning which slightly changes the scores can affect the decision

made based on continuous scores more than the one made based on

discrete scores. This is another advantage of the gamma based ap-
proach which means it needs much less tuning to achieve the best

performance. Moreover, the numbers inside brackets in the second

column of Table 1 show the recognition rates of the MLP posterior

based system when it is tuned to reach the best performance. Again,
you can see how the performance of MLP posterior based system can

be sensitive and rely on tuning to reach the best, which is not the case

for gamma based system. The sensitivity of the gamma based sys-

tem to tuning is also much less than standard HMM/GMM systems
using likelihoods for decoding. The same less sensitivity properties

was also observed to scaling of language model (another tuning fac-

tor) for gamma based system comparing with standard HMM/ANN

and HMM/GMM systems.

2Usually this factor is tuned using a development set to get maximum per-
formance, which does not guarantee the same improvement on the test set,
specially if the conditions (e.g. noise level, task, etc.) change. Sometimes
it is even tuned over the test set which is an incorrect practice as it shows
optimistically biased results! In any case, there is no strong theoretical ex-
planation for tuning, it makes the system less robust against changes and it is
time consuming.
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Fig. 2. Comparing the sensitivity of gamma posterior based system and MLP posterior based system to tuning phone deletion penalty. The
diagram inside is a zoom of performance curves for small values of phone deletion penalty (fine tuning).

5. CONCLUSIONS

In this paper, we proposed a new, principled, theoretical framework

for estimation, integration and use of more informative posterior
probabilities in automatic speech recognition systems. It is explained

how these more informative posteriors can be estimated by taking

into account all possible information present in the data (whole acous-

tic context), as well as possible prior information (e.g. phonetic and

lexical knowledge). The new posterior estimation theoretical frame-
work also allows designing optimal hierarchical HMM structures

such as proposed in [13] since it accommodate a principled way to

introduce appropriate context and prior knowledge in each level of

hierarchy.

We used these posteriors as local scores in a Viterbi decoder. It

is shown that these posteriors perform significantly better than MLP

posteriors (hybrid HMM/ANN approach) for clean and more spe-

cially for noisy speech. We observed that the relative improvement
is higher for more noisy speech which confirms that integrating prior

and contextual knowledge can compensate the lack of clear acoustic

information. It was also shown that the proposed system is much

less sensitive to tuning (e.g. phone deletion penalty) comparing to

the standard HMM/ANN and HMM/GMM systems, resulting in a
system which practically does not need to be tuned to reach the best

possible performance.
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