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ABSTRACT
The recognition of continuously spoken Korean digits is well known
to be a particularly challenging task among small vocabulary recog-
nition problems. In this paper, we review and evaluate our acoustic
modeling efforts for the purpose of efficient high-accuracy recogni-
tion of Korean digit strings for in-car applications. The measures
comprise context-dependent word models, duration-dependent dis-
tribution functions, error-weighted discriminative training as well as
a compressed bigram model that strongly constrains the HMM state
durations. Finally, an average word error rate across multiple chan-
nel and noise conditions of below 3% is achieved, which is a relative
reduction of 62% over the error observed with traditional context-
independent digit modeling techniques and about 36% relative error
reduction compared to ML-trained context-dependent digit models
of ordinary linear topology. Fast unsupervised model adaptation dur-
ing decoding yields additional 10% of relative improvement.

1. INTRODUCTION

The recognition of continuously spoken Sino-Korean1 digits is a
very difficult task for a couple of reasons. The first is that Sino-
Korean digits are monosyllabic, two of them even mono-phonemic.
Thus, they are very short. Moreover, a couple of digits are very
similar to each other and some are phonetic substrings of another
digit. Table 1 gives an idea. Furthermore, when uttered in continu-

1 2 3 4 5 6 7 8 9 0
il i sam sa o yuk chil pal ku kong

lyuk yeong

Table 1. The 12 Sino-Korean digit words

ous strings, Korean digits are strongly influenced by coarticulation.
For these reasons, it is particularly challenging to achieve ac-

ceptable system performance for Korean digit recognition tasks.
State-of-the-art techniques such as whole word digit models and
MFCC front-ends that potentiate word error rates (WERs) below
and far below 5% on other languages with adequate training data,
end up at WERs of around 10% for Korean digits [8, 7]. In this re-
gard, Korean digit modeling is a particularly well suited area for the
evaluation and the application of advanced modeling and parame-
ter estimation techniques. A couple of our techniques are outlined
in the following paragraphs and evaluated jointly in a Korean digit
recognition scenario.

1The Korean language actually has two ways of speaking digits, the Ko-
rean and the Sino-Korean digit words. The original purely Korean digit words
(hana, tul, set, ...) are rarely used and do not pose a particularly hard recog-
nition problem. In this text, the term Korean digits refers to the by far more
frequently used Sino-Korean digits.

2. CONTEXT-DEPENDENT DIGIT MODELING

The modeling of coarticulation effects between digits has been ad-
dressed in multiple studies [1, 3, 4, 16, 2]. Besides the straightfor-
ward application of cross-word context-dependent phonetic models
[2, 15], which might be word-specific or not, so-called Head-Body-
Tail models have been proposed which split digits into three parts
independent of the number of phonetic units [1, 3, 16]. In this study,
we make use of a different kind of model structure, which we will re-
fer to as Final-Initial models. 12 distinct models Bn (n = 1, . . . 12)
model the initial part of each of the 12 digit versions at the beginning
of utterances or after pauses and another 12 models nE do model the
final part of digits at the end of utterances or before pauses. Be-
sides that, 122 models nm (n = 1 . . . 12, m = 1 . . . 12) are set up
for the final part of each digit in coarticulation with the initial part
of each digit. For example, the digit sequence ”123” is modeled
by four models concatenated to the sequence B1 12 23 3E. Prior
to bigram duration modeling all digit models have linear topology
with the internal Final-Initial models nm having 9 states and the
start models Bn and end models nE having 5 states each. We do not
claim that this type of context-dependent digit modeling is superior
to other approaches. In the end, the best setup largely depends on
the amount of available training data. The Final-Initial models make
particularly little usage of parameter tying across models, which in
the other approaches is achieved by sharing the body-model across
context-dependent versions of the same digit or by tying phonetic
units of similar contexts. In this respect, our approach requires large
amounts of training data and is capable of estimating very accu-
rate models on such large amounts. We chose this kind of model
topology for this study, as it is particularly useful when it comes to
bigram-duration modeling. For reasons of computational complex-
ity the bigram-duration modeling is only applied model internally
and therefore benefits from single models covering longer periods of
the speech signal.

Also, it should be noted that having dedicated models for the fi-
nal digit parts before pauses and at the end of utterances realizes an
explicit modeling of the major part of final digits in digit sequences.
It has been found that final digits are often uttered somewhat slower
with more determination and clarity [10]. The independent end mod-
els learn this circumstance and they are capable of learning and rep-
resenting the final digits’ very own output distributions and dura-
tional statistics, especially so with the bigram duration model.

3. DURATION-BIGRAM MODELS AND
DURATION-DEPENDENT OUTPUT DISTRIBUTIONS

We have proposed a context-dependent duration model and dis-
cussed its efficient integration into a first-order hidden Markov
model-based speech recognizer in [18]. The principal approach is
the introduction of a durational bigram model that conditions the du-
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rational probability of an HMM state on the duration of the previous
state. This higher order model can be implemented in a first-order
model-based speech recognizer by expanding each HMM state into
an automaton of distinct rows of sub-states that represent the possi-
ble state duration, as depicted in Fig. 1.
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Fig. 1. Context-dependent ESHMM (CDESHMM) superstate

With each model state expanded into this kind of substate struc-
ture, the transition probabilities between expanded states automat-
ically represent durational bigram probabilities. They can be es-
timated using forward-backward training and applied in ordinary
Viterbi decoders. As indicated in Fig. 2, the transitions between su-
perstates can be restricted to reasonable transitions in order to pre-
vent particularly unusual duration relations, such as rushing through
one state after having remained in the previous state for a long time.
In [18] we found imposing this kind of reasonable transition struc-
ture to be beneficial in terms of recognition performance. Similarly,
it turned out to be advantageous to fully refrain from self-loopable
states in this new model topology. Thus, in this current study, none
of the states of the expanded state topology allows a self-transition.
This way the valid paths through the expanded HMMs are highly
constrained. In fact, having no self-looped states signifies that the
time-warping ability of standard HMMs is fully replaced by the
bigram-model based new topology.

Ps(1 | 2)Ps(1 | 1)

Ps(3 | 4)
Ps(3 | 5)

superstate s

Fig. 2. CDESHMM superstate transitions (reduced connectivity)

In principle, all substates of an expanded state are assumed to
share a single distribution function, so that the expanded topology
purely realizes a more refined duration model. With each state du-
ration represented in a distinct row of substates, however, the ex-
panded state representation allows the straightforward incorporation
of duration-dependent distribution functions. The left hand side of
Fig. 3 illustrates an expanded state with the relaxed substate tying
indicated through different shadings.

As a final measure of model compression, we here also intro-
duce and apply a merging of those substate rows which on the one
hand share the same distribution function and on the other hand have
similar entry probabilities. These substate rows can be merged with
a neglectable loss in (bigram-) model resolution. The procedure is

model compression

Fig. 3. Relaxed substate tying and model compression

illustrated in Fig. 3. The experimental section will demonstrate that
the resulting vast reduction of the number of states comes along with
almost no additional error.
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Fig. 4. Model topology representing the digit sequence ”123”

Fig. 4 finally illustrates the resulting concatenated model that
represents the digit sequence ”123”.

4. ERROR-WEIGHTED DISCRIMINATIVE TRAINING

Most commonly, the parameter set φ of HMM-based speech recog-
nition systems is estimated according to the Maximum Likelihood
(ML) objective function. Given U utterances with acoustic observa-
tion vectors X1...XU and transcriptions W1...WU , this yields

φML = argmax
φ∈Φ

UY

u=1

pφ(Xu | Wu) (1)

with Φ representing all possible parameter settings. The Baum-
Welch algorithm is a cheap and reliable optimization method for this
objective. Nonetheless, whenever the model is unable to learn the
true distribution of the data parameter estimates gained from more
discriminative objectives outperform Maximum Likelihood (ML)
parameter estimates in terms of recognition accuracy. This has been
confirmed in numerous studies [12, 17, 20, 11, 14, 19]. However, the
optimization of discriminative objectives is far more expensive and
much more difficult to apply. Even in the Extended Baum-Welch
training as formulated in [17, 14] some parameters are left for man-
ual tuning and convergence cannot be guaranteed.

Here, we review and apply an approach called ML-preferred
Error-Weighted MMI-Training (MLpEWMMI) that was originally
proposed in [19]. In analogy to an approach in [5] of Error-Weighted
Maximum Likelihood training, it augments the Maximum Mutual
Information criterion of discriminative training with tunable weights
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that control the influence of each training utterance on the training
objective. This way it was found that it is possible to obtain param-
eter estimates that come along with little error on the training data
and which generalize better than ordinary MMI estimates on unseen
data due to their stronger similarity to ML estimates.

The objective function of Maximum Mutual Information (MMI)
training is often formulated as

φMMI = argmax
φ∈Φ

UY

u=1

pφ(Xu | Wu)

pφ(Xu)
(2)

in which pφ(Xu) represents the overall likelihood of the acoustic
observation in the model. The Soft Error-Weighted MMI (soft-
EWMMI) objective introduces an additional weighting factor αu for
each utterance u weighting both numerator and denominator.

φsoftEWMMI = argmax
φ∈Φ

UY

u=1

pφ(Xu | Wu)αu+1

pφ(Xu)αu
(3)

With αu initialized with 0.0 for all utterances u, the training
objective at first resembles the ML criterion. After each EM iter-
ation, however, the weighting factors of misrecognized utterances
are raised and those of correctly recognized utterances are lowered
in a step-size adjusting scheme inspired by RProp [13]. This way,
the denominator term is only introduced for utterances which get
misrecognized and the overall influence of an utterance on the pa-
rameter estimates is slowly increased until the utterance is being
recognized correctly (with some confidence) or until a maximum
threshold αmax has been reached.

The final MLpEWMMI objective introduces additional weight-
ing factors βu in order to allow for a different weighting of numera-
tors and denominators.

φMLpEWMMI = argmax
φ∈Φ

UY

u=1

pφ(Xu | Wu)αu+1

pφ(Xu)βu
(4)

With both αu and βu initialized with 0.0 for all utterances, the train-
ing objective at first again resembles the ML criterion. Now, in
the beginning, only the numerator weights αu are increased. Only
once an αu has reached the threshold maximum value without the
misrecognition of the respective utterance u being corrected, αu is
retained at that value and the procedure starts introducing u’s de-
nominator term by increasing its βu. Doing so, parameter estimates
gained by MLpEWMMI optimization even stronger resemble Max-
imum Likelihood estimates and are believed to yield even better
generalization on unseen data. In [19], the objectives softEWMMI
and MLpEWMMI clearly outperformed the common MMI criterion
in terms of recognition accuracy of the resulting models on unseen
test data. However, the performance difference among the two was
hardly measurable.

5. EXPERIMENTS

The experiments were performed using the SiTec Databases Car01,
Car02 and Car03 of Korean speech recorded in stationary and mov-
ing vehicles [9]. The digit string utterances of the 800 speakers
of Car02 and Car03 were used for training, the 100 speakers of
the Car01 collection were used for testing. In order to achieve a
good degree of channel robustness, the data recorded via headset
microphone, seat-belt microphone, sun-visor microphone and rear-
view mirror microphone were used jointly in training. From Car01,
the three channels headset, seat-belt and sun-visor microphone were
merged into a single test set. Overall this comprises over 110 hours

of digit string data for training and about 4 hours of digit string data
for testing. The front-end includes spectral subtraction to eliminate
stationary noise and computes 11 MFCC coefficients. These are fed
into an LDA transformation before being modeled with a system of
semi-continuous Gaussian mixture distributions.

Table 2 compares the baseline performance of context-
independent (12 models of 9 states each) versus context-dependent
digit models (168 models with 5 and 9 states as described in Sec-
tion 2), each trained according to ML.

configuration training data test data
context-independent 8.00 7.80
context-dependent 5.19 4.57

Table 2. WER [%] of CI vs. CD digit models

Starting from the context-dependent models of linear topol-
ogy, we introduce the bigram duration model, then the duration-
dependent distribution functions as described in [18] and afterwards
perform model compression by merging rows of similar entry prob-
abilities. Table 3 lists the number of states and distributions after
these processing steps. Finally, with all 168 models expanded into
this dedicated topology, with the tying of distribution functions be-
ing relaxed and with the the model rows slightly compressed we end
up at 168 models with 8229 states in total. These share 1632 distri-
bution functions.

number of number of number
configuration models states of pdfs
context-independent 12 108 108
context-dependent 168 1416 1416
+ bigram-duration model 168 13658 1416
+ duration-dependent pdfs 168 13658 1632
+ state compression 168 8229 1632

Table 3. Size of the digit models

Obviously, the increase in distribution functions is very mod-
erate. Due to the training data being spread over a large number
(144) of internal Final-Initial digit models, there is too little data per
internal model to justify adding independent distributions. In the
data-driven procedure that relaxes the state tying dependent on the
amount of respective training data, nearly all internal Final-Initial
models remain untouched at only a single distribution function.

Table 4 lists the recognition performance after each of the var-
ious processing steps and also states the final recognition perfor-
mance with MLpEWMMI training performed on the state com-
pressed bigram-duration models. The WER of 2.91% is equivalent
to a relative reduction of 62% compared to the context-independent
digit models and of about 36% compared to the baseline context-
dependent ones.

The last row of Table 4 shows the recognition performance when
applying a cheap unsupervised adaptation scheme during decoding
on top of that. For speaker- and channel-adaptive decoding we utilize
a Maximum Likelihood based method that has been optimized for
a semi-continuous HMM recognizer running on limited resources
[6]. The basic idea is to transform all Gaussian mean vectors using
a linear transformation similar to MLLR. In order to estimate this
matrix we utilize information collected only in previous utterances.
This way, the approach is advantageous whenever decoding multiple
utterances from the same speaker or channel in sequence. In order to
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meet run-time constraints, we refrain from iterating adaptation and
recognition on each utterance in this adaptive decoding approach.
Adaptive decoding achieves an additional 10% of WER reduction.
This is despite the circumstance that it is an ML-based optimization
applied on discriminatively trained models.

WER [%] on WER [%] on run-time
configuration training data test data [RTF]

context-independent 8.00 7.80 0.069
context-dependent 5.19 4.57 0.081
+ bigram-

duration model 4.51 3.91 0.108
+ duration

dependent pdfs 4.22 3.65 0.109
+ state

compression 4.21 3.64 0.097
+ discr. training

(MLpEWMMI) 2.86 2.91 0.099

+ unsupervised
adaptation 2.34 2.67 0.110

Table 4. Word error rates and run-time [Real-Time Factor] after the
various processing steps

The right hand column of Table 4 lists the run-times in the dif-
ferent model setups for processing the 24000 test utterances using
a beam-search Viterbi decoder on a 3.0GHz (Xeon) workstation.
The Real-Time Factor (RTF) of 0.069 for the context-independent
acoustic models indicates that decoding of the test data (including
all front-end processing) that results in the WER of 7.8% consumes
0.069 times real-time. This means that decoding is 1/0.069 (=14.5)
times faster than real-time.

Obviously, run-time increases moderately from RTF 0.069 to
0.081 with the context-dependent digit models compared to the
context-independent ones. The additional increase in run-time
induced by the introduction of the bigram-duration model and
duration-dependent distribution functions is rather moderate as well
and, not surprisingly, run-time slightly gains from model compres-
sion. The effect of discriminative training on the decoding cost is
hardly measurable.

With the computationally cheap implementation of unsuper-
vised adaptation applied on top of that, we end up at a RTF of 0.11,
which indicates that this overall setup is well suited for embedded
devices and allows real-time response even on machines which are a
magnitude slower than the workstation used in these evaluations.

6. CONCLUSION

The paper has outlined various advanced modeling and parameter
estimation techniques and evaluated them jointly for the recogni-
tion of continuously spoken Korean digits. The application of error-
weighted discriminative training, context-dependent digit models,
the introduction of a bigram-duration model as well as duration-
specific distribution functions and the application of unsupervised
speaker- and channel-adaptation resulted in massive word error re-
ductions. Run-time of Viterbi decoding was only very moderately
affected by the additional degree of model complexity. The final
WER of 2.67% on independent mixed-channel evaluation data with
a reasonably small system setup facilitates Korean digit recognition
applications on embedded devices that seemed impracticable so far,
such as number dialing and postal code-based navigation.
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