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ABSTRACT

Packet loss concealment (PLC) at a receiver has a substan-
tial effect on the speech quality in Voice over IP. Most con-
ventional PLC systems have largely relied upon variations
of signal repetition and overlap-add interpolation which can
produce speech signals that do not follow the larger overall
statistical trends. In this paper, we demonstrate how Hidden
Markov Models can be utilized to effect PLC based on sta-
tistical signal processing. In particular, we show how HMM-
based PLC yields conditional density functions that can be
utilized by various statistical estimation methods that produce
signal parameter estimates that produce more natural varia-
tion than conventional PLC methods, thereby providing much
better speech quality.

1. INTRODUCTION

As Voice over IP proliferates, packet loss concealment (PLC)
at the receiver has emerged as an important factor in determin-
ing voice Quality of Service. Receiver-based PLC techniques
attempt to partially recover the speech signal content of a lost
packet from its neighbors.

Although differing in terms of speech analysis/synthesis
model type and some implementation details, conventional
PLC techniques (e.g., [1], [2], [3] to name a few) are largely
based on variations of signal and parameter repetition or in-
terpolation. For example, conventional methods are based on
various combinations of pitch synchronous extrapolation or
overlap-add interpolation of pitch cycles with noise mixing;
repetition or overlap-add interpolation of spectral envelope
parameters with possible bandwidth expansion of poles for
persistent loss; energy contour muting, and pitch lag jitter-
ing. Consequently, these conventional PLC methods can be
seen as "freezing" signal statistics during variations on repe-
tition, and "blurring" statistics during variations of interpola-
tion. By missing the larger overall statistical trends of speech
parameters such as spectral envelope, pitch, voicing, and en-
ergy amplitude evolution, a conventional PLC produces syn-
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thetic speech that can contain perceptually annoying artifacts.
Therefore, PLC methods that transcend the variations of rep-
etition and interpolation and provide more natural sounding
speech are welcome.

In this paper, we present an approach to PLC based on
a statistical signal processing framework offered by Hidden
Markov Models [4]. Although extensively used in speech
recognition and enhancement, HMMs have not been previ-
ously used in PLC. In applying HMMs to PLC, a sequence of
speech parameter vectors is viewed as being produced by an
HMM with continous probability density functions. Conse-
quently, in PLC, a decoder tracks the evolution of the speech
signal through the HMM. When a packet is lost, the HMM-
based PLC yields conditional probability density functions
that are useful for different approaches for statistically esti-
mating the missing signal parameters. In fact, we show that
HMM-based PLC provides better estimates and more natural
variation than conventional PLC. Many of the results in this
paper along with additional details and numerous examples
can be found in our forthcoming journal paper [5].

The rest of this paper is organized as follows. In Section 2
we discuss the approach to adapting HMMs to the task of
PLC. In [5], we primarily confined our discussion to MMSE-
based estimation. However, in Section 3, we provide evidence
that other estimation methods are more suitable for certain
signal parameters, showing that HMM-based PLC produces
parameter estimates that provide more natural variation than
the estimates produced by conventional repetition. In Sec-
tion 4 we provide some guidance on how the HMM-based
PLC methods can be utilized with different codec structures.

2. METHODS

The HMM-based PLC methods work within the scenario il-
lustrated in Figure 1. Each frame of a speech signal is coded
resulting at time t in a set of perceptually relevant parameters
such as spectral envelope, pitch, energy, and degree of voic-
ing which we group together and represent by the vector φt.
The parameters φt are subsequently transmitted in the form
of a packet over a packet loss channel, resulting in either a
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perfect reproduction φt without loss, or in φ̄t in the case of
packet loss. Therefore, the PLC system must produce an esti-
mate φ̂t of the missing parameters before signal synthesis at
the decoder.

As already mentioned, the estimation of missing vectors
φt is based on a HMM. The HMM is trained by the Baum-
Welch algorithm [4] with training vectors φt extracted from
the TIMIT database. No losses were introduced in the train-
ing set; the HMM should simply be a model describing the
evolution in the φt vectors. The HMM has a total of N =
331 states (split between “voiced”, “unvoiced” and “silent”
frames) and a single Gaussian emission pdf in each state.
Thus, we shall denote the emission pdf in state n by p(φt|st =
n) = N (µn,Σn), where st is the state occupation at time t.
Likewise, anm = P (st = n|st−1 = m) denote the state
transition probabilities.

When a packet containing φt is lost at time t, the PLC
estimate φ̂t is based on all correctly received past and future
vectors φT

1 , the subscript 1 and superscript T denoting “from
time 1 to T ”. T is determined by the algorithmic look-ahead,
e.g. T = t + 2 if a look-ahead of two frames is allowed. If
T = t − 1, then the missing parameter at time t is estimated
from the past parameters from times 1 to t− 1. Estimation of
the missing parameter vector φt is divided into three steps:

1. Given all correctly received parameter vectors φT
1 de-

termine P (st = n|φT
1 ), that is, the probability of being

in each HMM state at time t.

2. Using these state probabilities, obtain p(φt|φT
1 ), that

is, a pdf for the missing parameter vector conditioned
on the correctly received vectors.

3. Use this conditional pdf to obtain φ̂t, an estimate of the
missing parameter vector.

The three steps will be examined in more detail in the follow-
ing.

2.1. State probability identification

One of the standard problems associated with HMMs is that
of decoding, that is, given an observation sequence φT

1 find
the most probable hidden state sequence. The problem at
hand is somewhat different in that, given the observation se-
quence φT

1 , we want to determine the state probabilities at
different time instances t, P (st = n|φT

1 ). For now, we shall
assume that all φT

1 are available and return to the problem of
handling losses shortly. The first step in finding the state prob-
abilities is to split the conditional probability into “forward”
and “backward” parts,

P (st = n|φT
1 ) =

p(st = n,φT
1 )

p(φT
1 )

(1)

= cp(st = n,φt
1)p(φT

t+1|st = n,φt
1). (2)

Here c = p(φT
1 )−1 normalizes the state probabilities to sum

to unity and can thus be found as,

c =

(∑
n

p(st = n,φt
1)p(φT

t+1|st = n,φt
1)

)−1

(3)

For the other two terms in (2), we define αt(n) = p(st =
n,φt

1), and (using the first order Markov assumption), βT
t+1(n) =

p(φT
t+1|st = n,φt

1) = p(φT
t+1|st = n). These can be found

by the forward and backward recursions, see [4]:

αt(n) =

(
N∑

m=1

αt−1(m)anm

)
p(φt|st = n) (4)

βT
t+1(n) =

(
N∑

m=1

βT
t+2(m)anmp(φt+1|st+1 = m)

)
(5)

Now, we readily obtain the state probabilities for any t by
inserting (4) and (5) in (2) after some manipulations [5].

So, what if one of the observations φt′ within φT
1 is lost,

meaning that p(φt′ |st′ = n) in (4) cannot be evaluated? In
[5], we demonstrate how to handle this issue, showing that a
simple scaling suffices.

2.2. Forming the pdf

Once the state probabilities are found, formation of the miss-
ing parameter vector conditional pdf is straight-forward:

p(φt|φT
1 ) =

N∑
n=1

P (st = n|φT
1 )p(φt|st = n,φT

1 ) (6)

=
N∑

n=1

P (st = n|φT
1 )p(φt|st = n), (7)

where we used the Markov assumption,

p(φt|st = n,φT
1 ) = p(φt|st = n) (8)

i.e. given the state, the emission pdf is independent of the
emissions at all other time instances. As described above,
in the setup at hand p(φt|st = n) = N (µn,Σn), so that
(7) forms a Gaussian mixture model (GMM) with mixture
weights wn = P (st = n|φT

1 ).
In practice with a reasonable number of states, the HMM

is not capable of sufficiently decorrelating the state emissions
at subsequent time indexes; that is, (8) is not fulfilled. To al-
leviate this problem, we assign an auxiliary Gaussian pdf to
each HMM state specifically modeling the interframe param-
eter dependence, see [5] for details. The resulting conditional
pdf is still a GMM with weights wn = P (st = n|φT

1 ), how-
ever, the means and covariances are modified:

p̃(φt|φT
1 ) =

N∑
n=1

P (st = n|φT
1 )N (µ̃n, Σ̃n) (9)
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Fig. 1. Block diagram for the packet loss scenario with packet at time t being lost.

2.3. Estimation of φt from the GMM

Given the GMM in (9) various strategies can be applied for es-
timating φt. One possibility is that of minimum mean squared
error estimation (MMSE), which was also the choice of [5].
It is straight forward to show that the MMSE estimator is:

φ̂t

(N2)
=

N∑
n=1

P (st = n|φT
1 )µ̃n, (10)

where N2 denotes “Norm 2”, the error norm of which the
expectation is minimized.

However, as will be illustrated in Section 3, MMSE is not
necessarily the best choice for the estimation of some of the
parameters (specifically the pitch frequency). An alternative
is to minimize the expected error 1-norm, to which end we
define the cost-function:

J(φ̂
(N1)

t ) = Eφt
[‖φt − φ̂

(N1)

t ‖1]. (11)

To keep notation reasonably simple, and since the N1 estima-
tor will be applied to a single parameter anyway, at this point
we shall replace the full parameter vector φt with its m’th
element, φt,m. Using the definition of expectation, (11) then
becomes:

J(φ̂(N1)
t,m ) = Eφt,m

[|φt,m − φ̂
(N1)
t,m |] (12)

=
∫ ∞

−∞
|φt,m − φ̂

(N1)
t,m |p(φt,m|φT

1 )dφt,m. (13)

Here, p(φt,m|φT
1 ) =

∑N
n=1 P (st = n|φT

1 )N (µ̃n,m, σ̃2
n,m)

is the pdf of (9) marginalized w.r.t φt,m. We have not been
able to find a closed form minimizer for this cost-function.
However, note that J is a convex function (a sum of convex
functions is convex, generalizing to infinite sums), meaning
that proper iterative optimization procedures are guaranteed
to converge to the global minimizer. The 1st and 2nd order
derivatives needed for Newton-type iterations are,

J ′(φ̂(N1)
t,m ) =

N∑
n=1

P (st = n|φT
1 ) erf(

φ̂
(N1)
t,m − µ̃n,m√

2σ̃n,m

) (14)

J ′′(φ̂(N1)
t,m ) = 2

N∑
n=1

P (st = n|φT
1 )N (µ̃n,m, σ̃2

m,n), (15)

found through straight-forward but tedious calculus. When
the MMSE estimate was used as the initial guess, simulations
showed convergence after 6 iterations.

A final estimation concept to be used in this paper is that
of maximum likelihood (ML). In general, the GMM of (9)
may have multiple local maxima, rendering the ML-principle
infeasible. However, for the single parameter problem, we
can numerically search for the maximum of the marginalized
conditional pdf, p(φt,m|φT

1 ). Since p(φt,m|φT
1 ) may have

multiple local maxima, the global maximum is simply found
through a sweep over φt,m.

3. EXPERIMENTAL RESULTS

In [5], we show that the HMM-based MMSE approach as de-
scribed above produces more accurate parameter substitutes
as compared to conventional repetition/interpolation based meth-
ods. For example, on the average the spectral distortion (SD)
between the true and estimated LSFs was improved by more
than 0.5 dB in lost frames for a 20 % packet loss rate. Also,
perceptual improvements were demonstrated through listen-
ing tests. Numerous examples and results are presented in [5],
and we choose not to present them here. At this point, instead
of estimation accuracy, we shall focus on the parameter varia-
tion introduced through lost sequences. We demonstrate that
the HMM-based PLC produces more natural variation than
conventional repetition methods.

For simulation, we used the sinusoidal coder in [5] simu-
lated over a Gilbert packet loss model configured for an over-
all packet loss probability of 0.2 with the loss probability be-
ing two times larger after a loss than after a non-lost packet.
This results in somewhat bursty losses.

The evaluation of the parameter variation will be based
on histograms of the frame-to-frame change in parameters.
For the pitch frequency ω0 we use the ratio between adja-
cent frames, i.e. ∆ω0,t = ω0,t

ω0,t−1
and a histogram bin size

of 0.05. The pitch ratio is chosen because it is perceptually
more relevant than the difference ω0,t − ω0,t−1, cf. the com-
mon practice of quantizing pitch in the log-domain. For the
voicing cut-off frequency ωc we use ∆ωc,t = ωc,t − ωc,t−1

and a bin size of 0.2. This is in line with 4 bit linear quan-
tization (0.2 ≈ π

24 ). Gain changes ∆Gt are measured in dB
with a bin size of 3 dB. To evaluate the similarity between the
correct normalized histogram Htrue and the normalized his-
tograms resulting from PLC estimates Hplc we use a Jaccard-
like similarity measure, corresponding to the ratio between
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the “intersection” and the “union” of the two histograms:

S(Htrue,Hplc) =

∑B
j=1 min(Hplc(j),Htrue(j))∑B
i=1 max(Htrue(i),Hplc(i))

, (16)

where B denotes the number of bins determined by the bin
size and parameter range. If the histograms are identical, then
the Similarity attains its maximal value of S(Htrue,Hplc) =
1. If the histograms are very dissimilar, then S(Htrue,Hplc)
tends towards 0.

As mentioned in Section 2.3, MMSE estimation is not al-
ways the best choice for estimating the pitch in lost frames.
The reason for this can be deduced from Figure 2. Here, in
the upper plot we see how the true frame-to-frame pitch vari-
ations contain pitch double-, triple-, and halving errors (stem-
ming from the pitch detector), the same phenomena being
present in the HMM training data. The lower plot shows the
impact on estimation: the estimation procedure very rarely
predicts pitch multiples, instead the slight possibility of such
results in a widening of the histogram “main lobe”. For exam-
ple, consider a signal region where the pitch is stable at 200
Hz; then, the PLC should also produce a pitch close to 200
Hz. However, due to the chance of a pitch doubling error in
the missing frame, the MMSE estimator may produce an esti-
mate of say 220 Hz. Therefore, a ML approach disregarding
the chance of pitch multiples should result in less (and more
natural) pitch variation. 1-norm minimization is expected to
fall in between MMSE and ML. In Table 1 the histogram sim-
ilarity measure as defined in (16) is shown when using the
MMSE, N1, and ML-estimators. Also, the case of parame-
ter repetition is included for reference. We see that for all
three parameters, the HMM-based PLC estimators produce a
histogram much closer to that of true speech than does pa-
rameter repetition for the variation of the pitch, voicing, and
gain parameters. Also as expected, for the pitch, ML out-
performs the N1 approach, in turn being better than MMSE.
On the other hand, the three HMM-based estimators produce
nearly identical results (difference on 3rd or 4th decimal only)
when applied to the gain and voicing. The reason is that the
gain and voicing does not exhibit very abrupt change phe-
nomena as does the pitch, so that the marginal conditional
pdf p(φt,m|φT

1 ) for these parameters has no “side-lobes”.

4. CONCLUDING REMARKS

Our results demonstrate that HMM-based PLC estimates pro-
duce more natural variation than conventional repetition-based
methods. This along with our positive results in [5] clearly
demonstrates the efficacy of HMM-based PLC. A natural ques-
tion is how these methods can be utilized with conventional
existing codecs such as CELP-based methods. The HMM-
based PLC can clearly be used to provide lsf, pitch, voicing,
and gain information that can be used for guiding an exist-
ing CELP-based PLC. In particular, the parameter estimates

created by the HMM-based PLC can be used to orient the
time-domain pitch synchronous operations that are used to
synthesize a substitute signal that is phase-matched to the true
known speech signal. Thus, the HMM-based PLC can be used
to complement the existing codec PLC systems.
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Fig. 2. The correct and PLC histograms for ∆ω0,t, modified
to enhance illustration. The PLC histogram is for the MMSE
based estimation as described in Section 2.3.

Rep. MMSE N1 ML
∆ω0,t 0.52 0.58 0.59 0.61
∆ωc,t 0.25 0.66 0.66 0.66
∆Gt 0.22 0.63 0.63 0.63

Table 1. Similarity measure (16) between histograms for the
correct and the PLC produced frame-to-frame variations. The
HMM-based estimators always provide more natural varia-
tion than repetition.
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