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ABSTRACT

We address practical coding schemes for the Slepian-Wolf
distributed data compression problem. We consider three
approaches. First, we apply a source-splitting technique
to code at any rate in the achievable rate region with low
complexity. It is well known that vertices in the achiev-
able rate region can be implemented with low complex-
ity. The source-splitting approach transforms any achiev-
able rate point into a vertex in a higher-dimensional Slepian-
Wolf achievable rate region. Secondly, we consider linear
programming relaxations of the maximum-likelihood de-
coding problem. We give a polynomial complexity con-
struction for linear codes with a certificate property. Lastly,
when the decoder does not have any knowledge of the source
statistics, we present practical schemes for universal decod-
ing, a topic heretofore confined primarily to theory.

1. INTRODUCTION

Distributed compression of correlated sources has become
of interest in the research community recently because of
its possible promise in efficient transmission of information
where energy, computation, and communication constraints
prohibit nodes from significantly cooperating with one an-
other. The Slepian-Wolf problem discusses near-lossless
distributed compression and has served as a substructure in
a number of distributed data dissemination strategies. For
discrete memoryless source (DMS) M -tuple
(U1, . . . , UM ) ∼ P

(
u1, . . . , uM

)
, the achievable rate re-

gion R [
P

(
u1, . . . , uM

)]
is given [1] by∑

i∈S

Ri > H (U(S)|U(Sc)) ∀ S ⊆ {1, 2, . . . , M} (1)

where U(S) = {U j}j∈S .
Csiszár showed in [2] that random linear block codes

asymptotically achieve optimal performance - in terms of
R [

P
(
u1, . . . , uM

)]
and error exponents. Practically speak-

ing, this problem is difficult because of the complexity in
jointly decoding the M sources. However, when operat-
ing at vertices - rates (R1, . . . , RM ) obtained by expanding

H(U1, . . . , UM ) into M terms by successive applications
of the chain rule - a successive decoder given side infor-
mation of previously decoded users suffices. Recent low-
density parity-check code (LDPC) and turbo code formula-
tions have successfully addressed iterative decoding at ver-
tices.

Section 2 provides preliminary definitions. Section 3
discusses ‘source-splitting’ to transform any achievable rate
tuple into a vertex in a higher-dimensional problem. Section
4 considers maximum-likelihood (ML) decoding in terms
of a linear program (LP) and discusses an LP relaxation
with a certificate property. [2] discussed a universal decoder
that can achieve the optimal performance without knowing
P

(
u1, . . . , uM

)
. However, it is NP-hard and is usually only

discussed for proofs of existence. Section 5 discusses a low-
complexity universal relaxation with a certificate property.

2. PRELIMINARIES

Throughout this discussion we consider a discrete memo-
ryless source (DMS) pair (U1, U2) ∈ U = U1 × U2 with
joint probability distribution Pr (u) where u = (u1, u2). We
adhere to the following definitions:

CH(S) = the convex hull of all s ∈ S
V (B) = {v ∈ B | v is a vertex of the polytope B}
H (B) � the number of half-spaces representing B

P (U) =

{
P =

({Pa}a∈U
)

: P ≥ 0,
∑
a∈U

Pa = 1

}

Pu =

({
1
n

n∑
i=1

1ui=a

}
a∈U

)
for u ∈ Un

Pn (U) =
{
P ∈ P (U) : P = Pu for some u ∈ Un

}
The ‘method of types’ [2] exploits the property

|Pn (U)| =
(

n + |U| − 1
|U| − 1

)
= O

(
(n + 1)|U|

)
(2)
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to illustrate that the number of types is polynomial in n.
More generally, we exploit the following repeatedly:(

n

k

)
=

(
n

n − k

)
= O(nk). (3)

Here we consider the case where r ∈ {1, 2}, |Ur| = 2tr and
block compression transforms ur ∈ Un

r to sr ∈ Umr
r via a

linear code Hr =

⎡
⎢⎣

−Hr
1
′−

...
−Hr

mr

′−

⎤
⎥⎦ ∈ Umr×n

r according to

sr = Hrur where algebraic operations are performed over
F2tr . For j ∈ {1, . . . , mr} we define N (j) � {i|Hj,i = 1}
and δj = |N (j)|. Throughout this discussion we consider
achievable rates, as given by (1).

3. SOURCE-SPLITTING

Let us now consider taking each symbol of the DMS Ur and
splitting it into a collection of random variables of smaller
cardinality. We say that Ur

i ↔ (Ur,a
i , Ur,b

i ) if there is a bi-
jection between the random variables Ur

i and (Ur,a
i , Ur,b

i ).
We consider the following way to perform source-splitting:

Ur
i �→

(
Ura

i = min(π(Ur
i ), T )

Urb
i = max(π(Ur

i ), T ) − T

)
(4a)

�→ Ui = π−1
(
Ua

i + U b
i

)
(4b)

where T ∈ Ur and π is a permutation of Ur.
We note that definition (4) gives many possible splits,

especially when we π and T ∈ Ur. For a nontrivial T there
are

(|Ur|
T

)
distinct ways to map the |Ur| symbols to the split-

ting sets in (4). This provides a total of

|Ur|−2∑
i=1

(|Ur|
i

)
= 2|Ur| − |Ur| − 2 = O(2|Ur|)

distinct ways to perform the splitting mechanism and form
the bijection Ui ↔ (Ua

i , U b
i ).

For two DMSs (U1, U2) drawn according to P
(
u1, u2

)
,

we can split U1 to form (U1a, U1b) as shown in (4). This
creates three sources that can be separately encoded at rates
R1a, R1b, R2. Because U ↔ (U1a, U1b), we have H

(
U1, U2

)
=

H
(
U1a, U1b, U2

)
. Through the chain rule for entropy we

consider the rates

R1a = H
(
U1a

)
(5a)

R2 = H
(
U2|U1a

)
(5b)

R1b = H
(
U1b|U2, U1a

)
(5c)

R1 = R1a + R1b. (5d)

For any nontrivial split, (R1, R2) is not a vertex inR [
P

(
u1, u2

)]
,

but (R1a, R2, R1b) is a vertex in R [
P

(
u1a, u2, u1b

)]
. This

encoder encoder 

encoder encoder 

encoder encoder decoder 

decoder 

decoder 

Fig. 1. Source Splitting and Decoding for a Two-Source
Slepian-Wolf Problem

directly implies a parallelizable encoding strategy and pipelined
single-user decoding strategy that operates with the com-
plexity of a smaller-alphabet decoder. By varying across
the different values of the threshold T ∈ U and permutation
π of Ur, we may sweep across O(2|Ur|) distinct non-vertex
points. By treating blocks of outcomes as a single outcome
and splitting across the larger alphabet, it can be shown that
all rates are achievable with this splitting approach.

3.1. Iterative Decoding and Source Splitting

For rates that are vertices of the Slepian-Wolf region, good
binning strategies exist to perform successive decoding. The
iterative decoding technique applied here is the sum-product
algorithm [3], which operates on the graphical structure of
the code. sum-product algorithm produces approximate symbol-
wise a posteriori probabilities (APPs). In the context of our
problem, the bin indices handed to the decoder for (U1a, U1b, U2)
are denoted as (s1a, s1b, s2). At each level of the pipeline,
the APP outputs of previously decoded users are used as in-
puts to the currently operating decoder. The outputs of the
iterative decoders are the approximate APPs

P
(
U1a

i = u|s1a, s1b, s2
)

� app1a
i (u) ,

P
(
U1b

i = u|s1a, s1b, s2
)

� app1b
i (u) ,

P
(
U2

i = u|s1a, s1b, s2
)

� app2
i (u) .

Symbol-based Maximum A Posteriori (MAP) allows for
(û1

i , û
2
i ) the APPs:

ûr
i = arg max

u∈{0,1,...|Ur|−1}
appr

i (i) .

While app2
i (u) is the direct output of one of the iterative

decoders, (app1a
i (u) , app1b

i (u)) must be combined to yield
app1

i (u). The splitting strategy (4) leads to the implication

j 	= T : U1a
i = j ⇒ U1b = 0 (6)

j 	= 0 : U1b
i = j ⇒ U1a = T (7)

and thus app1
i (u) is easily derived:

u < T : P
(
U1

i = u|s1a, s1b, s2
)

= app1
i (u)

u > T : P
(
U1

i = u|s1a, s1b, s2
)

= app1b
i (u − T )

Simulation results illustrate the splitting technique’s promise.
First, P

(
u1, u2

)
for sources is randomly selected over U1 =
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Fig. 2. Symbol error rate for source-splitting to achieve non-
vertex rate pairs.

U2 = F2t . We next draw n i.i.d. pairs and encode using ir-
regular LDPCs with degree distributions from [4], where
non-zero entries are selected uniformly. We perform the
sum-product update rule in its dual form [3, Sec. IX], op-
erating on DFT of APPs to attain the same gain as in the
binary case. Figure 2 illustrates the low-complexity decod-
ing at non-vertices for t = 2, n = 5000. The leftmost
plot shows four non-vertex rate pairs on the boundary of
R [

P
(
u1, u2

)]
for which iterative decoding in their neigh-

borhoods has been performed. The rightmost plot shows the
symbol error rate as a function of R1+R2−H(U1, U2). We
note from the plots the excellent performance of iterative
decoding combined with the proposed splitting technique.

4. LINEAR PROGRAMMING BASED DECODING

The ML decoder uses s and P
(
u1, u2

)
to select the esti-

mated codeword û as the most likely from all codewords
consistent with s:

û = arg min
{ur∈Co(Hr,sr)}r=1,2

n∑
i=1

− log P (u1
i , u

2
i )(8)

where Co (H, s) = {u ∣∣ Hu = s}.
For a linear code, each local constraint is a smaller linear
code and

Co (Hr, sr) =
mr⋂
j=1

{
u

∣∣ u|N(j) ∈ Co
(
Hr

j , sr
j

)}
. (9)

We now discuss formulating the ML decoding problem in
terms of an LP. For a = (a1, a2) ∈ U1×U2, we define Ia1,a2

i

to be the indicator variable for the event (u1
i , u

2
i ) = (a1, a2).

Define

ιr(I) =
∑

ar̄∈Ur̄

Ia1,a2 where r̄ = {1, 2} \ r

µr(I) =
∑

ar∈Ur

arι
r(I)

I(Hr
j , sr

j) �
{
I

∣∣ µr(I)|N(j) ∈ Co
(
Hr

j , sr
j

)}
I(Hr, sr) =

mr⋂
j=1

I(Hr
j , sr

j), (10)

and let γa1,a2 � − log P (a1, a2) to consider

min
2∑

r=1

∑
ar∈Ur

n∑
i=1

γa1,a2Ia1,a2
i

s.t. I ∈ B
B = {I|ιr(I) ∈ CH(I(Hr, sr)), r = 1, 2}(11)

By virtue of ML-decoding for linear codes generally being
NP-hard, the best bound on H (B) is O(2n).

Consider an LDPC H over F2t such that that for all n,
∀j, δj ≤ d. We discuss a relaxed polytope in spirit of LP
relaxations of Feldman et. al for channel coding [5]. Since
I(Hr, sr) can be represented as (10) we consider

B̃r
j (H

r
j , sr

j) =
{
I | µr(I)|N(j) ∈ CH(I(Hr

j , sr
j))

}
B̃ =

2⋂
r=1

mr⋂
j=1

B̃r
j (H

r
j , sr

j).

Because Hr is an LDPC, B̃r
j (Hr

j , sr
j) can be compactly

represented in terms of the Qδj−1 ≤ Qd−1 legitimate con-

figurations. Thus H
(
B̃

)
= O(n) . For any graph other

than a tree, however, V
(
B̃

)
includes fractional entries, termed

‘pseudocodewords’ [6]. Nonetheless it can be shown that

v ∈ V
(
B̃

)
is integral ⇒ {µr(I) ∈ Co (Hr, sr)}r=1,2.

Thus, as in [5], this relaxation has the ML-certificate prop-
erty: if an integral solution is found, it is the ML solution.

5. UNIVERSAL MINIMUM-ENTROPY DECODING

In [2], Csiszár discussed a universal decoding algorithm that
for linear codes attains all achievable rates and incurs no
loss in error exponent. The ‘minimum-entropy’ decoder se-
lects the coset members with smallest empirical joint en-
tropy:

û = arg min
{ur∈Co(Hr,sr)}r=1,2

H
(
Pu1,u2

)
. (12)

Note that (12) is a discrete optimization problem with
an exponential number of candidates. We now transform it
to a continuous optimization problem. For any I ∈ V (B)),
and the corresponding (u1, u2) = (µ1(I), µ2(I)), we can
construct Pu1,u2 as a linear mapping:

P = τ(I), where (13a)

P (a1, a2) = τa1,a2(I) =
1
n

n∑
i=1

Ia1,a2
i , (13b)

Since H (P ) is strictly concave in P , and since for con-
cave minimization over a polytope an optimal solution lies
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in V (B), we can perform (12) in the continuous domain:

min H(P ) (14a)

s.t. (I, P ) ∈ Bi,p (14b)

where Bi,p = {(I, P )|I ∈ B, P = τ(I)} (14c)

and take (u1∗, u2∗) = (µ1(I∗), µ2(I∗)) where (I∗, P ∗) is
an optimal solution to (14).

Along with not knowing how to efficiently represent
Bi,p, another problem manifests itself in (14): |V (B)| =
O(2n) and ‘concave minimization over a polytope’ is NP-
hard, generally requiring to visit every v ∈ V (B).

Although |V (B)| = O(2n), note from (2) that |Pn (U)| =
O

(
(n + 1)|U|). We thus consider the following strategy:

a) ProjectBi,p ontoBp = {P | (I, P ) ∈ Bi,p for some I}.
b) Perform the minimization

min H(P ) (15a)

s.t. P ∈ Bp(H, s). (15b)

Since |V (Bp)| = O
(
(n + 1)|U|), the worst-case sce-

nario of visiting each v ∈ V (Bp) has polynomial
complexity. Let vertex P ∗ be the minimizer in (15).

c) Find an I∗ such that (I∗, P ∗) is a vertex of Bi,p(H, s)
and let u∗ = µ(I∗) be the estimated codeword.

Performing the the projection of a polytope, as in a), was
originally addressed with Fourier-Motzkin elimination [7,
section 2.8] and is in general extremely computationally
complex. However, in this situation, dim (Bp) is fixed and
invariant of n, so (2) suggests using special-purpose poly-
tope projection algorithms that are low-complexity in this
case. Recent developments [8, Sec. 3], [9] in the opti-
mization literature have illustrated polytope projection al-
gorithms whose complexity is linear in |V (Bp)| or H (Bp).
Instantiation of a single LP [7] addresses c).

We consider performing a relaxed universal decoder by
performing steps a)-c) replacing

Bi,p with B̃i,p = {(I, P )|I ∈ B̃, P = τ(I)}, and

Bp with B̃p = {P | (I, P ) ∈ B̃i,p for some I}.

Because of the fractional ‘pseduocodewords’ in V
(
B̃

)
, we

must verify that H
(
B̃p

)
and

∣∣∣V (
B̃p

)∣∣∣ are polynomial in

n. Because H
(
B̃

)
= O(n) along with (13), it follows that

H
(
B̃i,p

)
= O(n). From [10] and (3) it follows that the

projection B̃p ⊆ R
|U| of a polytope B̃i,p satisfiesH

(
B̃p

)
≤(H(B̃i,p)

|U|−1

)
= O

(
H

(
B̃i,p

)|U|−1
)

. From [7] and (3) it fol-

lows that any polytope B̃p ⊆ R
|U| satisfies

∣∣∣V (
B̃p

)∣∣∣ ≤

(H(B̃p)
|U|

)
= O

(
H

(
B̃p

)|U|)
. Since H

(
B̃i,p

)
= O(n),

both H
(
B̃p

)
and

∣∣∣V (
B̃p

)∣∣∣ are polynomial in n. Hence

we have constructed a polynomial complexity universal de-
coder that has the ME-certificate property: if an integral
solution is found, it is the minimum-entropy solution.

6. CONCLUSION AND EXTENSIONS

Further work plans to address constructing LDPCs that have
provably good properties under the proposed frameworks in
Sections 4 and 5.
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