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ABSTRACT

We investigate the design of optimal quantizers for individual en-

coding of several noisy observations of an unseen source, which is

jointly decoded with the help of side information available at the

decoder only. The joint statistics of the source data, the noisy ob-

servations and the side information are known, and exploited in the

design. A variety of lossless coders for the quantization indices, in-

cluding ideal Slepian-Wolf coders, are allowed. We present the op-

timality conditions such quantizers must satisfy, together with an

extension of the Lloyd algorithm for a locally optimal design. Ex-

perimental results for Wyner-Ziv quantization of noisy Gaussian

sources confirm the high-rate quantization theory established in

our previous work.

1. INTRODUCTION

Consider a network of satellites obtaining noisy readings of some

data of interest, which must be transmitted to a ground station.

The ground station has access to side information, for instance

archived data or readings from terrestrial sensors. At each satel-

lite, neither the noisy observations of the other satellites nor the

side information is available. Nevertheless, the statistical depen-

dence among the unseen data, the noisy readings and the side in-

formation may be exploited in the design of each of the individ-

ual satellite encoders and the joint terrestrial decoder to optimize

the rate-distortion performance. Clearly, if all the noisy readings

and the side information were available at a single satellite, tra-

ditional joint denoising and encoding techniques could be used to

reduce the transmission rate as much as possible, for a given dis-

tortion. However, since each of the noisy readings must be indi-

vidually encoded without access to the side information, practical

design methods for efficient distributed coders of noisy sources are

needed.

The first attempts to design quantizers for Wyner-Ziv (WZ)

coding, that is, lossy source coding of directly observed data with

side information at the decoder, were based on high-dimensional

nested lattices [1, 2] or heuristically designed scalar quantizers [3],

often applied to Gaussian sources, with either fixed-rate coding

or entropy coding of the quantization indices. A different ap-

proach was followed in [4], where the Lloyd algorithm was gen-

eralized for locally optimal, fixed-rate WZ quantization design.

Later, [5] included rate-distortion optimized quantizers in which

the rate measure is a function of the quantization index, for exam-

ple, a codeword length. Lloyd quantization for ideal Slepian-Wolf

coding without side information was considered in [6]. A more

general extension of the Lloyd algorithm appeared in [7], which

considered a variety of coding settings under a unified framework,
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including the important case of ideal Slepian-Wolf distributed cod-

ing of one or several sources with side information, that is, when

the rate is the joint conditional entropy of the quantization indices

given the side information. A theoretic characterization of WZ

quantizers with Slepian-Wolf coding at high rates was presented

in [8]. Recently, nested lattice quantizers and trellis-coded quan-

tizers followed by Slepian-Wolf coders have been used to imple-

ment WZ coders (see, e. g., [9]).

The design of optimal quantizers of noisy observations of un-

seen sources without side information was studied in [10], and ex-

tended to the case of distributed quantization of many observations

with joint reconstruction for fixed-rate coding in [11, 12]. The

problem of optimal noisy WZ (NWZ) quantization design with

side information at the decoder and ideal Slepian-Wolf coding has

only been studied under the assumptions of high rates and partic-

ular statistical conditions [13].

The object of this paper is to study the design of quantizers for

distributed coding of noisy observations, with side information at

the decoder, optimized in terms of distortion and rate. We present

a unified framework under which a variety of coding settings is

allowed, including ideal Slepian-Wolf coding, along with an ex-

tension of the Lloyd algorithm for locally optimal design.

Sec. 2 contains the formulation of the problem studied, illus-

trated with applications. A theoretic analysis for optimal quantizer

design is presented in Sec. 3. Experimental results for NWZ cod-

ing of jointly Gaussian data are shown in Sec. 4.

2. FORMULATION OF THE PROBLEM

AND APPLICATIONS

Throughout the paper, the measurable space in which a random

variable (r. v.) takes values will be called alphabet. We shall follow

the convention of using uppercase letters for random variables, and

lowercase letters for particular values they take on. Probability

density functions (PDF) and probability mass functions (PMF) are

denoted by p and subindexed by the corresponding r. v.
We study the design of optimal quantizers for distributed coders

of noisy sources with side information. An example of such coder

is depicted in Fig. 1. Let n ∈ Z
+ represent the number of en-

coders. Let X , Y and Z = (Zi)
n
i=1 be r. v. defined on a common

probability space, statistically dependent in general, taking values

in arbitrary, possibly different alphabets. For each i, Zi repre-

sents an indirect observation of some unseen source data X of

interest, available only at encoder i. For instance, Zi might be

an image corrupted by noise, an extracted feature such as a pro-

jection or a norm, or any type of correlated r. v., and X might

also be of the form (Xi)
n
i=1, where Xi would play the role of

the source data from which Zi is originated. Some side infor-

mation Y , for example previously decoded data, or an additional
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Fig. 1. Distributed coding of noisy sources with side information

with n = 2 encoders.

noisy observation, is available at the decoder only. Each obser-

vation Zi is quantized with a map qi(zi) into a countable set,
generating the quantization index Qi, losslessly encoded and de-

coded. Define Q = (Qi)
n
i=1. A particularly important case of

lossless coding is ideal Slepian-Wolf coding, in which we assume

that we can transmit Q at a rate equal to the joint conditional en-

tropy H(Q|Y ) = H(Q1, . . . , Qn|Y ), and Q is recovered with

zero probability of error. The vector of quantization indices Q
and the side information Y are used jointly to estimate the unseen

source data X . Let X̂ represent the estimate, obtained with the

reconstruction function x̂(q, y), possibly in an alphabet different
from that ofX .

The concept of rate measure was introduced in [7] to model

particular types of lossless coding. We now extend this concept by

means of a defining property. The term rate function will be used

here, instead of rate measure, to avoid confusion with the con-

cept of (probability) measure. Let r(q, x, x̂, y, z) be a measurable,
non-negative, extended real-valued function, possibly defined in

terms of probability distributions involving Q, X , Y and Z. Such
function will be called rate function if its associated expected rate

R = E r(Q, X, X̂, Y, Z) does not decrease when the probability
distributions defining r are modified but the expectation is taken
with respect to the original distributions. For example, consider

r(q, y) = − log pQ| Y (q| y). The rate function corresponding
to any other PMF p′

Q| Y would be r′(q, y) = − log p′
Q| Y (q, y).

The modified associated rate would then be R′ = E r′(Q, Y ),
where r′ is defined in terms of the new PMF but the expecta-
tion is taken with respect to the original one. Clearly, R′ − R =
D(pQ| Y ‖p′

Q| Y ) � 0, hence r is indeed a rate function. In fact, it
was observed in [7] that for this example of rate function, the asso-

ciated rate R = H(Q|Y ) is precisely that introduced by an ideal
Slepian-Wolf coder. Consequently, r(q, y) = − log pQ| Y (q| y)
was used to model both this type of coder and a conditional coder

with access to the side information at the encoder. It can be seen

that all rate functions defined in [7] satisfy the above definition,

thereby making the corresponding coding settings applicable to

this framework.

A distortion function is defined as a measurable, non-negative,

extended real-valued function d(q, x, x̂, y, z), completely deter-
mined as a given, fixed mapping, not depending on any proba-

bility distributions. The associated expected distortion is denoted

by D = E d(Q, X, X̂, Y, Z). If the alphabets of X , Y , Z and X̂
were equal to some common normed vector space, then an exam-

ple of distortion function would be d(x, x̂, y, z) = α‖x − x̂‖2 +
β‖y − x̂‖2 + γ‖z − x̂‖2, for any α, β, γ ∈ [0,∞).

We define a cost function c(q, x, x̂, y, z) as a non-negative lin-
ear combination of rate and distortion functions. The associated

expected cost is C = E c(Q, X, X̂, Y, Z). Note that under the
previous definitions, a cost function is in fact a rate function. An

example of cost function suitable for distributed source coding ap-

plications, the main focus of this work, is c(q, x, x̂, y) = d(x, x̂)+
λ r(q, y), where λ is a non-negative real number determining the
rate-distortion tradeoff in the Lagrangian cost C = D + λR.

Given a suitable cost function c(q, x, x̂, y, z), we address the
problem of finding quantizers qi(zi) for each i, and a reconstruc-
tion function x̂(q, y), minimizing the associated expected cost C.
The choice of the cost function leads to a particular noisy distrib-

uted source coding system, including a model for lossless coding.

The problem of NWZ quantization, i. e., the case represented

in Fig. 1 for n = 1, can be interpreted as a rate-constrained statis-
tical inference problem with side information. Precisely, a statis-

ticQ forX from Z with a rate constraint, sayH(Q|Y ), is desired.
For instance, X might be a parameter of a family of distributions

for Z. If the Hamming distance (inequality indicator) between x
and x̂were used as distortion function, then the expected distortion
would be the probability of error, and the optimal reconstruction

function would be a maximum a posteriori decoder givenQ and Y ,
equivalent to a maximum-likelihood decoder (given Y ) if X were

(conditionally) uniformly distributed.

Even though the focus of this work is the application repre-

sented in Fig. 1, the generality of this formulation allows many

others. For example, consider the coding problem represented

in Fig. 2, proposed in [14]. A r. v. Z is quantized. The quanti-
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Q
q(z)

Z Q

X X

Fig. 2. Quantization of side information.

zation index Q is coded at rate R1 = H(Q), and used as side
information for a Slepian-Wolf coder of a discrete random vec-

tor X . Hence, the additional rate required is R2 = H(X|Q).
We wish to find the quantization function q(z) minimizing C =
R2 + λR1. It can be shown that r1(q) = − log pQ(q) and
r2(x, q) = − log pX| Q(x| q) are well-defined rate functions, us-
ing an argument similar to that for − log pQ| Y (q| y). Therefore,
this problem is a particular case of our formulation. In fact, this

is a NWZ or a statistical inference problem in whichR2 plays the

role of distortion, since minimizing H(X|Q) is equivalent to min-
imizing I(Z; X) − I(Q; X), non-negative by the data processing
inequality, zero if and only if Q is a sufficient statistic.

3. OPTIMAL QUANTIZER DESIGN

We now establish necessary conditions for the optimal quantiza-

tion and reconstruction functions, analogous to the nearest neigh-

bor and centroid condition found in conventional, non-distributed

quantization. They will be expressed in terms of estimated cost

functions, defined below.

The estimated cost function for sender i is defined as

c̃i(qi, zi) = E [[c(Q, X, x̂(Q, Y ), Y, Z)]Qi=qi | zi] ,

where [expression]substitution denotes substitution in an expression,
that is, the expression is evaluated at qi and conditioned on the
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event {Zi = zi}. Note that the estimated cost function is com-
pletely determined by the joint distribution of X , Y and Z, the
cost function c(q, x, x̂, y, z), the quantization functions of other
senders (qi′(zi′))i′ �=i, and the reconstruction function x̂(q, y). Us-
ing the fact that Qi = qi(Zi) and iterated expectation, it is easy
to see that for each sender i, E c̃i(Qi, Zi) = C. This key prop-
erty leads to the necessary optimality condition for the quantiza-

tion function at sender i:

q∗i (zi) = arg min
qi

c̃i(qi, zi), (1)

provided that a minimum exists.

Similarly to the sender cost functions, the estimated cost func-

tion at the receiver is defined as

˜̃c(q, x̂, y) = E[c(q, X, x̂, y, Z)| q, y].

Observe that the expression is evaluated at x̂ and conditioned on
{Q = q, Y = y}, and it is completely determined by the joint
distribution of X , Y and Z, the cost function c(q, x, x̂, y, z), and
all quantization functions (qi(zi))i. Arguing as in the case of the

sender cost functions, it can be shown that E ˜̃c(Q, X̂, Y ) = C.
It follows from this key property that an optimal reconstruction

function must satisfy

x̂∗(q, y) = arg min
x̂

˜̃c(q, x̂, y), (2)

provided that a minimum exists, for each pair (q, y) satisfying
pQ|Y (q|y) > 0 (x̂(q, y) can be arbitrarily defined elsewhere).

The necessary optimality conditions (1) and (2), together with

the rate update property defining rate functions, suggest an alter-

nating optimization algorithm that extends the Lloyd algorithm to

the quantizer design problem considered in this work:

1. Choose initial quantization functions (q
(1)
i (zi))i=1,...,n. Set

k = 1 and C(0) = ∞.
2. Update the cost function c(k)(q, x, x̂, y, z), completely de-

termined by probability distributions involvingQ(k),X , Y
and Z.

3. Find an optimal reconstruction function x̂(k)(q, y), given

(q
(k)
i (zi))i and c(k)(q, x, x̂, y, z).

4. Compute the expected cost C(k) associated to (q
(k)
i (zi))i,

x̂(k)(q, y) and c(k)(q, x, x̂, y, z). Depending on its value

with respect to C(k−1), continue or stop.

5. For each i, obtain the next optimal quantization function

(q
(k+1)
i (zi))i, given the most current quantization func-

tions with index i′ �= i, x̂(k)(q, y) and c(k)(q, x, x̂, y, z).
Increase k and go back to 2.

It can be proved that the sequence of costs C(k) in the above algo-

rithm is non-increasing, and since it is non-negative, it converges.

In addition, any quantizer satisfying the optimality conditions (1)

and (2), without ambiguity in any of the minimizations involved, is

a fixed point of the algorithm. Even though these properties do not

imply per se that the cost converges to a local or global minimum,

the experimental results in the next section show good convergence

properties, especially when the algorithm is combined with genetic

search for initialization.

Many variations on the algorithm are possible, such as con-

straining the reconstruction function, for instance imposing linear-

ity in Y for each Q when the distortion is the mean-squared error

of the estimate X̂ , or any of the variations mentioned in [7].

4. EXPERIMENTAL RESULTS

In this section, we illustrate the theoretic analysis with experimen-

tal results for a simple, intuitive case of NWZ coding (Fig. 1 with

n = 1 encoder). Let X0 ∼ N (0, 1), and define Y0 = X0 + NY

and Z0 = X0 + NZ , where NY ∼ N (0, 1/γY ) and NZ ∼
N (0, 1/γZ), and X0, NY and NZ are independent. Consider a

block of k ∈ Z
+ independent, identically distributed drawings

of (X0, Y0, Z0), denoted by ((X1, Y1, Z1), . . . (Xk, Yk, Zk)). The
unseen source data is defined to be the k-dimensional r. v. X =
(X1, . . . , Xk), and similarly for the side information Y and the

noisy observation Z. Clearly, X , Y and Z are jointly Gaussian.

All experimental results were obtained setting γY = γZ = 10.
We wish to design NWZ quantizers minimizing the Lagrangian

cost C = D + λR, where the distortion is the mean-squared
error D = 1

k
E ‖X − X̂‖2, and the rate is that required by an

ideal Slepian-Wolf coder, R = 1
k

H(Q|Y ), both normalized per
sample. The high-rate approximation theory for NWZ quantiza-

tion [13, Theorem 3] implies that

D(R) � 1

1 + γY + γZ

�
1 + 2πeMk

γZ

1 + γY
2−2R

�
, (3)

where Mk is the minimum normalized moment of inertia of the

convex polytopes tessellatingR
k. The information-theoretic NWZ

distortion-rate function follows immediately from [15, Theorem 5],

and it is equal to the operational expression (3), replacing Mk by

its limit as k → ∞, i. e., 1/2πe.
For dimensions k = 1, 2 and several values of λ, NWZ quan-

tizers and reconstruction functions were designed using the ex-

tension of the Lloyd algorithm presented in this work. A simple

genetic search method was combined with the Lloyd algorithm

to select initial quantizers based on their cost after convergence.

The corresponding distortion-rate points are shown in Fig. 3, along

with the NWZ distortion-rate function, the high-rate approxima-

tion, and the distortion bounds D0 = σ2
X| Y = 1/(1 + γY ) and

D∞ = σ2
X| Y Z = 1/(1 + γY + γZ). The results obtained con-
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Fig. 3. Distortion-rate performance of optimized NWZ quantizers

for dimensions k = 1, 2.

firm the theory developed in [13, 15] (see also [8, 16]) and the

usefulness of the algorithm presented, for the statistics of the ex-

ample. Two 2-dimensional NWZ quantizers for R � 0.50 and
R � 0.97 bit are represented in Fig. 4. According to the results
in Fig. 3, the quantizer on the left may be considered a low-rate

quantizer, and the one on the right, a high-rate quantizer. Note the

index repetition in the quantizer on the left. Consistently with the

high-rate NWZ quantization theory, the quantizer on the right is
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a hexagonal lattice, and no index is reused. To obtain the latter

quantizer, the algorithm was applied to a fine discretization of the

joint PDF of X , Y and Z, with approximately 7.0 106 samples

contained in a 6-dimensional ellipsoid of probability 1 − 10−4,

which gave 5557 different points for Z. Due to this discretization,
the edges of the quantization regions appear somewhat jagged. For

k = 1 and high rates, all quantizers obtained experimentally where
uniform without index repetition.

We now turn to the case of NWZ quantizers with ideal, non-

distributed entropy coding, i. e., R = H(Q). Currently, no the-
oretic characterization of such NWZ quantizers exist, but it was

observed in [7] that index repetition may be convenient in terms

of rate-distortion performance, for this case, and also for the fixed-

rate case, when the source data is directly observed (Z = X).
Intuitively, disconnected regions may be mapped into a common

quantization index to reduce the entropy (or the number of quan-

tization indices), with little impact on the distortion so long as the

side information helps determine in which region the quantized

value actually was. A scalar NWZ quantizer obtained with our

extension of the Lloyd algorithm is depicted in Fig. 5. Observe

-5 -4 -3 -2 -1 0 1 2 3 4 5

2 3 4 1 2 3 4 1 2 3 4 1 2

z

q
(z
)

pZ(z) pZ|Y (z|0)

Fig. 5. Optimized scalar NWZ quantizer for R = H(Q). λ =
0.011,R � 2.0 bit, D � 0.058.

that the quantizer is almost uniform and there is index repetition

with respect to the PDF pZ of Z (σ
2
Z = 1 + 1/γZ = 1.1). How-

ever, the conditional PDF pZ| Y of Z given Y is narrow enough

for the index repetition to have negligible impact on the distortion

(σ2
Z| Y = 1/(1 + γY ) + 1/γZ � 0.19).

5. CONCLUSIONS

We have established necessary optimality conditions for distrib-

uted quantization of noisy sources with a variety of rate constraints,

and extended the Lloyd algorithm for its design. The generality of

our formulation, in which the concept of cost function plays a key

role, includes many other applications such as statistical inference

and quantization of side information. Experimental results con-

firm the high-rate approximation theory for NWZ quantization. In

addition, they suggest that the convergence properties of the ex-

tended Lloyd algorithm are similar to those of the classical one,

and can benefit from a genetic search algorithm for initialization.
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