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ABSTRACT

Tree-structured partitions provide a natural framework for rapid

and accurate extraction of the level sets of a multivariate function

f from noisy data. In general, a level set is the set S on which f
exceeds some critical value (e.g., S = {x : f(x) ≥ γ}). Bound-

aries of level sets typically constitute manifolds embedded in the

high-dimensional observation space. The identification of these

boundaries is an important theoretical problem with applications

for digital elevation maps, medical imaging, and pattern recogni-

tion. Because level set identification is intrinsically simpler than

field denoising or estimation, explicit level set extraction methods

can achieve higher accuracy than more indirect approaches (such

as extracting a level set from an estimate of the function). The trees

underlying our method are constructed by minimizing a complex-

ity regularized data-fitting term over a family of dyadic partitions.

Our method automatically adapts to spatially varying regularity of

both the level set and the field underlying the data. Level set ex-

traction using multiresolution trees can be implemented in near lin-

ear time and specifically aims to minimize an error metric sensitive

to both the error in the location of the level set and the associated

field estimation error.

1. INTRODUCTION

Set estimation is an important theoretical problem with a large

number of important and diverse applications. Set estimation,

which is the recovery of regions in the signal’s domain in which the

signal satisfies some criterion, arises in the extraction of lines of

iso-height from digital elevation maps, feature identification, and

pattern recognition. In these and other applications, set estimation

can be daunting but necessary task for effective data analysis.

The capabilities of set extraction methods are typically gov-

erned by the existence of boundaries and edges in the data. Exist-

ing work has tried to address this by using specialized basis func-

tions and representations (such as wedgelets [1], curvelets [2], or

platelets [3]), but these solve the sometimes tangential problem of

denoising objects separated by boundaries, rather than identifying

the boundaries themselves. Boundary estimation arises in several

data analysis problems where neither field estimation nor tradi-

tional classification is appropriate. The boundaries of such sets

typically constitute lower-dimensional manifolds embedded in a

higher-dimensional observation space. In this paper, we address

the problem of recovering sets from noisy multi-dimensional data.

Set estimation may be more desirable than complete signal re-

construction for a variety of reasons. In many applications, the

location of boundaries or level sets is of principal importance,
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while the amplitude of the function away from any boundary is

secondary, if not irrelevant. For example, doctors may wish to

identify regions where uptake of a pharmaceutical exceeds some

critical level, or mapping agencies may want to extract networks of

roads from satellite images. Signal estimates with very low mean

error over the entire image may not be suitably accurate near the

level set boundaries. Because set estimation is intrinsically sim-

pler than field estimation, explicit level set extraction methods can

potentially achieve higher accuracy than more indirect approaches

(such as estimating a set from an estimate of the function).

This distinction manifests itself in the selection of tree-pruning

criteria. Tree-based signal estimation frameworks (e.g. [1, 3, 4])

determine whether nodes should be pruned from the tree based on

the size of the tree. Recent work in tree-based methods for bi-

nary classification [5], however, has revealed that optimal pruning

decisions must exhibit a spatial adaptivity not possible using tra-

ditional, tree size based criteria. This difference implies that one

critical aspect of tree-based set estimation must be the selection of

the tree-pruning rule most appropriate for set estimation.

1.1. Relationship to previous work

There exist a number of straightforward approaches to level set

estimation, including thresholding observations, denoising obser-

vations and thresholding the result, or performing a classification

routine on thresholded observations. The difficulty with these ap-

proaches, however, is that performance analysis is very difficult, if

not intractable, in the presence of noise. Related work was con-

ducted by Mammen and Tsybakov in [6], but this work focused on

estimation of a boundary between a black and a white region from

binary observations, an edge detection problem which is a special

case of the more general level set estimation problem presented in

this paper. The advantage of the method proposed in this paper is

that it is capable of utilizing additional information available from

non-binary observations.

1.2. Notation

Let f : [0, 1]d −→ [C�, Cu] be a field of bounded amplitude, and

let

S ≡ {x ∈ [0, 1]d : f(x) ≥ γ}
for some γ ∈ [C�, Cu]. Given n noisy observations (xi, yi) ∈
[0, 1]d × [C�, Cu], i = 1, . . . , n, where E[yi] = f(xi), our goal

is to learn an estimate of S. Let PX be the probability measure for

X , which determines the marginal distribution of observations on

the support of f , and let pA ≡
R

A
dPX for A ⊆ [0, 1]d. Given

two sets, S and F , let

∆(S, F ) ≡ {x : x ∈ (S ∩ F c) ∪ (F ∩ Sc)}

denote the symmetric difference, where Sc denotes the comple-

ment of S.
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2. ERROR METRICS FOR SET ESTIMATION

Careful selection of an error metric is the first step in designing

a level set estimator. The goal of signal estimation is typically

to minimize the mean squared error between the true signal and

the estimate, and the goal of binary classification is usually to

minimize the probability of misclassification, which leads to min-

imizing the symmetric difference between the decision sets of the

Bayes’ and the learned classifiers. In level set estimation, how-

ever, it is more appropriate to minimize the symmetric difference

between the true set of interest and its estimate weighted by sever-

ity of the error over the symmetric difference.

An appropriate error metric can be designed as follows. For a

given set F , we define the local error function to be

eF (x) =
γ − f(x)

Cu − C�

ˆ
I{x∈F} − I{x∈F c}

˜
− C�

Cu − C�

where I is the indicator function. The normalization ensures that

eF ∈ [0, 1]. From here, we define risk function as

R(F ) =

Z
eF (x)dPX ;

this measures the distance between the signal, f , and the threshold,

γ, and weights the distance at each location x by plus or minus

one according to whether x ∈ F . Thus regions where x ∈ F
but f(x) < γ (that is, x ∈ Sc) will contribute positively to the

risk function. Given the risk function, we can define the “excess

risk” as R(F ) − R(S), which measures the difference between

the risk of an estimate and the risk of the true level set, S. Using

the definition of the risk, the excess risk can be written as

R(F ) −R(S) =
2

Cu − C�

Z
∆(S,F )

|γ − f(x)|dPX , (1)

which gives a weighted measure of the symmetric difference be-

tween S and F , as desired. Note that minimizing (1) is equivalent

to minimizing R(F ) since R(S) is a constant.

The effect of such a metric is demonstrated in Figure 1. On the

left is drawn a contour outlining the true level set S. The center

and rightmost figures show the boundary of two different candidate

level set estimates. There is only a small symmetric difference be-

tween the set in the center image and the truth, but the distance of

the function from the level γ is large in this region. In contrast,

there is a large symmetric difference between the set in the right-

most image and the truth, but the distance of the function from the

level γ is relatively small in that region.

An additional advantage of the proposed metric is that it is

simple to define an empirical error metric for a candidate level set

estimate F as

beF (xi) =
γ − yi

Cu − C�

ˆ
I{xi∈F} − I{xi∈F c}

˜
− C�

Cu − C�

resulting in the empirical risk function

bRn(F ) =
1

n

nX
i=1

beF (xi),

which is both computable and constructed so that E[ bRn(F ) −
R(S)] = R(F ) −R(S).

This metric is distinctly different from the Lp norms typically

encountered in signal estimation or the “unweighted” symmetric

difference metrics arising in classification.

(a) (b) (c)

Fig. 1. Behavior of level set error metric. (a) Field f and true

level set S. (b) Level set estimate (solid line) with a small sym-

metric difference but large errors within the symmetric difference

region. (c) Second level set estimate (solid line) with same error as

estimate in (b); this estimate has a large symmetric difference but

small errors within the symmetric difference region. Despite these

differences, these two set estimates could have the same weighted

symmetric difference risk.

3. LEVEL SET ESTIMATION PROCEDURE

We propose to estimate the level set of a function from noisy ob-

servations by using a tree-pruning method akin to CART [4] or

dyadic decision trees [5]. Let π(T ) denote the partition induced

on [0, 1]d by the binary tree T . This can be used to represent an

estimate of a level set by assigning a zero or a one to each leaf (i.e.

each A ∈ π(T )) to indicate whether that cell of the partition is inbS.

Let bpA = (1/n)
P

i I{xi∈A} be the empirical estimate of pA,

and

bp′
A(δ) ≡ 4 max

„bpA,
log(1/δ) + qA log 2

n

«
.

Let qA denote the number of bits required to encode A. Specifi-

cally, consider the prefix code proposed in [5] for A ∈ π(T ). If A
is at level j in the binary tree T , then j + 1 bits must be used to

describe the depth of A, j bits must be used to describe whether

each branch is a left or right branch, j log2 d bits must be used to

describe the coordinate direction of each of the j branches, and

one bit must be used to assign a label (inside or outside of bS) to A.

This results in a total of 2j + j log2 d + 2 bits, and this expression

is denoted as qA.

Next set the penalty associated with a tree-based estimator to

be

Φn(T ) =
X

A∈π(T )

r
2bp′

A(δ)

n
(log(2/δ) + qA log 2); (2)

the next section contains a detailed discussion of the origin of this

penalty. Intuitively, this penalty is designed to favor unbalanced

trees which hone in on the location of the manifold defining the

level set. To see this, note that qA � j, while bp′
A(δ) � 2−j .

This implies that deep nodes contribute less to Φn(T ) than shal-

low nodes, and so, for two trees with the same number of leafs,

Φn(T ) will be smaller for the more unbalanced tree, as displayed

in Figure 2.

Define the level set estimator to be

bTn ≡ arg min
T∈TM

bRn(T ) + Φn(T ), (3)

where TM is the set of all dyadic trees which partition [0, 1]d into

rectangular cells with sidelengths no longer than 1/M . As shown
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Fig. 2. Balanced and unbalanced partitions of the function support.

Both partitions have the same number of leaves, but the partition

on the right is better adapted to the boundary and has a smaller

Φn(T ).

in the following section, this estimator is nearly minimax optimal.

Furthermore, the estimator is rapidly computable, as described in

[5, 7]. Specifically, let L = log2 M be the maximum number

of dyadic refinements along any coordinate used to form a tree T .

Then bTn can be computed in O(ndLd log(nLd)) operations using

a dynamic programming algorithm.

4. PERFORMANCE ANALYSIS

Many of the key points in the following theoretical analysis were

derived using the error bounding techniques developed by Scott

and Nowak [5] in the context of binary classification. The pro-

posed level set estimation method hinges on the following main

result:

Theorem 1 Let Φn(T ) be defined as in (2). Then with probability
at least 1 − 2δ,

R(T ) ≤ bRn(T ) + Φn(T ) (4)

for all T ∈ TM .

A sketch proof of this result follows: For a partition cell

A ∈ π(T ), let R(T, A) =
R

A
eT (x)dPX and bRn(T, A) =

(1/n)
P

i beT (xi)I{xi∈A}. Applying the “relative” form of Ho-

effding’s inequality (Theorem 2.3(c) in [8]), we have that, with

probability at least 1 − δ,

R(T, A) − bRn(T, A) <

r
2R(T, A) log(1/δ)

n
. (5)

Next note that (5) implies

R(T, A) − bRn(T, A) <r
2R(T, A) ((qA + 1) log 2 + log(1/δ))

n
.

with probability not exceeding δ2−(qA+1). Summing over all A ∈
π(T ), we have

R(T ) − bRn(T ) <X
A∈π(T )

r
2R(T, A) ((qA + 1) log 2 + log(1/δ))

n
(6)

except on a set of probability not exceedingX
A ∈ π(T )
label = 0 or 1

δ2−(qA+1) =
X

A∈π(T )

δ2−qA ≤ δ,

where the last inequality follows from the Kraft inequality, which

is applicable since qA is a prefix codelength.

While the bound in (6) is valid, it is not computable because

it depends on R(T, A). However, note that R(T, A) ≤ pA for

all A. As shown in [5], pA ≤ bp′
A with probability at least 1 − δ,

leading to the result in Theorem 1.

Not only does this framework give us a principled way to

choose a good level set estimator (i.e. the estimator in (3), but

it also allows us to bound the expected risk for a collection of n
observations. In particular, we have the following theorem:

Theorem 2 Let bTn be as in (3) with Φn(T ) as in (2). With prob-
ability at least 1 − 4/n over the training sample,

R( bTn) −R(S) ≤

min
T∈TM

(R(T ) −R(S) + Φn(T )) +

r
log n

2n
.

As a consequence,

E

h
R( bTn) −R(S)

i
≤

min
T∈TM

(R(T ) −R(S) + Φ(T )) +

r
log n

2n
+

4

n
.

The proof closely follows that of Theorem 7 in [5] and is omitted

here for brevity. This theorem decomposes the expected error into

two main components: (a) R(T ) − R(S), the error associated

with approximating S with a tree-based partition, and (b) Φn(T ),

which can be viewed as a bound on the estimation error.

The bound on the expected error in Theorem 2 allows us to an-

alyze the proposed method in terms of rates of error convergence.

Assume that the boundary of S has box-counting dimension one;

i.e., if [0, 1]d is partitioned into Md equal sized cells, then the

boundary of S intersects no more than CMd−1 of those cells for

all M and some constant C. Then R(T ) − R(S) ≤ C1/M and

Φ(T ) ≤ C2M
d−1(log n)/n for some constants C1 and C2. Op-

timizing over M , we find that

Theorem 3 If the boundary of S has box-counting dimension one,
then

E

h
R( bTn) −R(S)

i
≤ C3(n/ log n)−1/d

for some constant C3.

Because level set estimation can be viewed as a generalization of

the binary classification problem, we have that the minimax lower

bound on the error convergence rate for this problem is n−1/d,

which implies that the proposed method performs within a loga-

rithmic factor of the optimal rate.

5. SIMULATION RESULTS

To test the practical effectiveness of the proposed method, we sim-

ulated observations of the elevation of St. Louis, where the true

elevations, normalized to lie between zero and 255 were obtained

from the U.S. Geological Survey website and are displayed in Fig-

ure 3(a). Organizations such as the USGS are often interested in

identifying flood plains, which shift as a result of plate tecton-

ics. The true flood plain (the level set of interest) is displayed

in Figure 3(b); note that it encompasses low-lying regions out-

side the river, distinguishing this problem from an edge detection

problem. Our goal is to extract the flood plain from the set of
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noisy observations displayed in Figure 3(c). The noisy observa-

tions were obtained by adding zero-mean uniform noise with a

variance of three thousand to the true image. (Note that this im-

plies that the xi’s are deterministic, not random as assumed in the

theoretical analysis. The extension of the above analysis to de-

terministic sample locations is part of our ongoing research.) As

shown in Figure 3(d), simply thresholding the observations to ob-

tain the level set bSthresh is highly insufficient in the presence of

noise. In contrast, the application of the proposed method to this

data results in an accurate estimate of the level set, bTn, as dis-

played in Figure 3(e). This estimate was formed by weighting the

penalty Φn(T ) to minimize the average empirical error and objec-

tively highlight the difference between the proposed approach and

a wavelet-based approach (described below). Furthermore, we em-

ployed “voting over shifts”, a process analogous to averaging over

shifts or using an undecimated wavelet transform. Careful thought

reveals that voting over shifts can be accomplished in O(n log n)
time. Compare this result with the result of a more indirect ap-

proach: namely, performing wavelet denoising and thresholding

the denoised image to obtain a level set estimate, bSwavelet, to pro-

duce to image in Figure 3(f). We used undecimated Haar wavelet

denoising, and set the hard threshold to maximize the level set esti-

mation accuracy. After empirically selecting an appropriate weight

on Φn(T ) and wavelet threshold, we observed the following mean

errors over one hundred noise realizations:

R(bSthresh) −R(S) = 8, 595

R(bSwavelet) −R(S) = 1, 469

R( bTn) −R(S) = 1, 101.

Roughly speaking, wavelet denoising is analogous to choos-

ing a partition with a penalty proportional to the size of the tree

or partition, as opposed to the spatially adaptive penalty employed

in this method. This example demonstrates that, as expected, the

spatially adaptive penalty results in a partition which drills down

on the location of the boundary; the wavelet-based approach, in

contract, appears to oversmooth the boundary. Furthermore, since

the level set of interest does not correspond to an edge in the im-

age, we would not expect curvelets or wedgelets to significantly

outperform wavelets in this context.

6. CONCLUSIONS AND FUTURE WORK

We have demonstrated that tree-pruning based approaches to level

set estimation result in nearly optimal estimates and can be com-

puted rapidly to produce effective practical estimates. The intro-

duction of a new error metric allows us to bound the weighted

symmetric difference between the true level set and the estimate

using the relative form of Hoeffding’s inequality. The extension of

this method to the estimation of a collection of level sets simulta-

neously is an area of ongoing investigation.

Because of the variety of applications for which level set ex-

traction may be useful, understanding the optimal tree pruning

strategy and associated performance bounds is important for a va-

riety of observation models, including Gaussian and Poisson noise

models. We plan to extend the above framework to these cases in

future work. We also plan to more thoroughly characterize how

these performance bounds compare with two alternative, more im-

plicit, level set extraction methods: (a) signal estimation followed

by set extraction from the signal estimate, and (b) thresholding the

(a) (b) (c)

(d) (e) (f)

Fig. 3. Simulation results. (a) True function f : [0, 1]2 →
[0, 255]. (b) True level set S = {x ∈ [0, 1]2 : f(x) > 120}.

(c) Noisy observations, yi ∈ [−95, 350], i = 1, . . . , 5122.

(d) Level set of observations bSthresh = {xi : yi > 120}.

R(bSthresh) − R(S) = 8, 598. (e) Level set estimated with the

proposed method. R( bTn) − R(S) = 1, 104. (f) Level set es-

timated by TI Haar wavelet denoising followed by thresholding.

R(bSwavelet) −R(S) = 1, 472.

observations according to whether they meet the given set criterion

followed by binary classification.
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