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ABSTRACT
Integrated Sensing and Processing Decision Trees (ISPDTs) were
introduced in [1] as a tool for supervised classification of high-
dimensional data. In this paper, we consider the problem of un-
supervised classification, through a recursive construction of IS-
PDTs, where at each internal node the data (i) are split into clus-
ters, and (ii) are transformed independently of other clusters, gui-
ded by some optimization objective. We show that the maximiza-
tion of information-theoretic quantities such as mutual information
and α-divergences is theoretically justified for growing ISPDTs,
assuming that each data point is generated by a finite-memory ran-
dom process given the class label. Furthermore, we present heuris-
tics that perform the maximization in a greedy manner, and we
demonstrate their effectiveness with empirical results from multi-
spectral imaging.

1. INTRODUCTION

In unsupervised classification, no statistics of the data jointly with
their class-labels are known, so the goal is to group the objects into
clusters based only on their observable features, such that each
cluster contains objects that share some important properties. In
some cases, there may be a notion of a “true” class-label of each
object that has simply not been provided; it may then be appropri-
ate to view the class-label of each object as a latent variable, and to
evaluate the performance of a clustering scheme by a post hoc as-
signment of the class-labels to (a subset of) objects in each result-
ing cluster. In other cases, there may be no natural notion of “true”
class-labels; the efficacy of the clustering scheme is often mea-
sured in such cases by the economy in description length attained
by a two-step description of the objects by first describing the at-
tributes common to the clusters and then describing the differential
attributes of each object within the cluster. k-Means Clustering
and Mixture Modeling using the Expectation Maximization (EM)
Algorithm [2, 3] are examples of techniques used for unsupervised
classification. Furthermore, a common approach in classification
is to map the “sparse” high-dimensional attributes of objects into a
“dense” low-dimensional space, and carry out the clustering in this
new space. One example of such techniques is Multidimensional
Scaling, which maps a set of abstract objects, with given pairwise
“distances,” to points in a Euclidean space in such a way that all
pairwise distances are nearly preserved. This allows the use of
clustering algorithms which are known to be efficient in Euclidean
space, e.g., model-based clustering [3].

In this paper, we investigate the problem of unsupervised clas-
sification using Integrating Sensing and Processing Decision Trees

(ISPDTs) [1]. ISPDTs (also called Iterative Denoising Trees) grow
in a greedy manner, successively transforming and splitting each
node according to some local goodness criterion. They are prov-
ably optimal (i.e., they achieve the Bayes-optimal misclassifica-
tion rate) in some bandwidth or complexity-constrained situations
[1, 4]. Moreover, they model adaptive sensors by providing dif-
ferent “looks” at a scene, after a number (but not all) of features
or data has been processed. In short, the following steps are per-
formed in an ISPDT:

• Beginning with the whole data collection at the root, each node
represents a subset of the data of its parent. The data in each
node are transformed through a projection into a lower dimen-
sional space, and partitioned into two clusters, according to an
optimization criterion (for example, maximization of the min-
imum distance between points in different clusters, or maxi-
mization of the distance between cluster centroids). In the case
where labeled (training) data are present, the projection and
clustering may be tuned to maximize the separation between
the classes. In our setting, we do not have any labeled data.
The two clusters then end up at the two children of the node.

• Under some conditions, a node may not be split further (i.e.,
it becomes a leaf node). All the data points at each leaf are
considered to belong to a single class; that is, classification is
done only at the leaves of the ISPDT.

In the following, we will present two information-theoretic criteria
for transforming and clustering data in an ISPDT. These two cri-
teria correspond to optimal decision rules in an asymptotic sense
(that is, as the number of dimensions of each data point goes to
infinity).

The paper is organized as follows. We begin by formulating
our problem in Section 2. We show in Section 3 how mutual infor-
mation and α-divergences may be used as criteria for unsupervised
classification via ISPDTs, and we present heuristics for achieving
our objective in Section 4. In Section 5 we present experimental
results on a classification task in hyperspectral imaging. Finally,
concluding remarks appear in Section 6.

2. PROBLEM FORMULATION

Let A = {Xn(1), . . . , Xn(M)} be a collection of n-dimensional
data objects (sequences) that we wish to classify. Each object
Xn(j) has a hidden label Y (j), drawn from a finite set Y (of pos-
sibly known cardinality), and (Xi(j), Y (j)) are jointly distributed
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Fig. 1. An ISPDT partitions the data at each node into two sets,
according to some optimization criterion. The variable Zi corre-
sponds to the i-th level of the tree; the vector Z = g(Xn) repre-
sents the path from the root to the leaf where Xn is placed.

according to pY · pX|Y . For simplicity, we can assume that

pXn|Y (xn|y) =
nY

i=1

pX|Y (xi|y),

although similar techniques can be applied to other stochastic pro-
cesses with memory (e.g., Markov chains).

We now have the following
Problem Formulation: Find a partition A1, . . . , Am of A, such
that, with high probability, Xn(i), Xn(j) ∈ Ak, iff Y (i) = Y (j).

For solving the problem, we will use an ISPDT with two dif-
ferent information-theoretic optimization objectives at each node:
(i) maximization of a weighted sum of KL-divergences, or (ii)
maximization of an α-divergence score. Asymptotically, as n →
∞, these two objectives turn out to correspond to maximization of
mutual information and minimization of probability of classifica-
tion error, respectively.

3. INFORMATION-THEORETIC ASPECTS OF ISPDTS

As we mentioned earlier, ISPDTs are built recursively,
through a greedy procedure, such that:

• The object features extracted at each node are not necessarily
the same as the features extracted at the parent nodes.

• The partitioning at each node is done according to an optimiza-
tion criterion; this criterion depends on the objects in that node
only, and not on the splitting of other nodes.

Any denoising tree is associated with a function

g : Xn → {0, 1}∗,

which takes as input a data sequence, and returns a bit vector that
describes the unique leaf to which the object is placed. For ex-
ample, in Figure 1, all data sequences Xn in leaf A110 satisfy
g(Xn) = 110. As can be easily established, there is a 1 − 1
relationship between a denoising tree and a function g (modulo
differences in branch labels). Classification is performed only at
the leaves through a function h : L → Y , where L ⊆ {0, 1}∗

corresponds to the set of leaves. In the following, we will use the
notation Z = g(Xn).1

1Boldface quantities represent vectors; their dimensionality is deter-
mined by the context.

We now explore two approaches for building an ISPDT (or,
equivalently, for determining the function g). They both rely on
information-theoretic quantities: the mutual information functional,
and the α-divergence.

3.1. Greedy Maximization of Mutual Information

Here, our goal is to maximize the mutual information I(Y ; g(Xn))
with respect to g(·). Fano’s inequality [5]

I(Y ; g(Xn)) ≥ (1 − Pe)H(Y ) − 1,

suggests that, for any classifier implied by h, the probability of
error Pe cannot be small if I(Y ; g(Xn)) is small; this provides
the motivation for maximization of the latter.

Through the chain rule of mutual information [5] we have:

I(Y ; Z) =

I(Y ; Z1) + I(Y ; Z2|Z1) + . . . + I(Y ; Zm|Z1, Z2, . . . , Zm−1),

where m is the maximum leaf depth in an ISPDT (we can take
m = M , without loss of generality). Each one of the terms
above corresponds to node splits of a particular level; for instance,
I(Y ; Z1) corresponds to the split at the root, while
I(Y ; Zj |Z1, . . . , Zj−1) corresponds to the splits at level j. Now,
to maximize I(Y ; Z) in a greedy manner, it suffices to maximize
iteratively each of the above terms. I.e.,

• First, find the split at the root which maximizes I(Y ; Z1).

• Given the split at the root, find the splits which maximize
I(Y ; Z2|Z1 = 0) and I(Y ; Z2|Z1 = 1). These two quantities
correspond to the two children of the root; the maximization
of each one is done through appropriate splitting of the corre-
sponding node/child.

• Iteratively, given the splits at the tree levels 1, . . . , j − 1, find
the splits at level j, such that I(Y ; Zj |Z1 = z1, . . . , Zj−1 =
zj−1) is the maximum possible, for each binary string (z1, . . . ,
zj−1). Moreover, a node with path (z1, . . . , zj−1) is not split
any further if I(Y ; Zj |Z1 = z1, . . . , Zj−1 = zj−1) = 0 (i.e.,
Y can be determined perfectly from (z1, . . . , zj−1)).

Note that the above procedure is not guaranteed to find the max-
imum of I(Y ; g(Xn)) with respect to g; a non-greedy procedure
could possibly yield a higher value.

3.2. Greedy Minimization of Probability of Error

Here, we assume that each class label is represented by a unique
binary sequence that corresponds to a path from the root to a leaf
in an ISPDT. In other words, there exists a 1-1 function L : Y →
{0, 1}∗. Then, a sequence Xn is erroneously classified iff g(Xn) �=
L(Y ), where, as before, Y is the true class label of Xn. In other
words, there is an error if (at least) one bit of g(Xn) is wrong.

Obviously, in order to minimize the overall error, we have to
transform and split the data at each node such that the two sets of
each partition do not contain any common classes. Note that the
distribution that generates the data of each set is a mixture of dis-
tributions corresponding to the classes in the set. Let P0, P1 be the
two mixtures. Then, the optimum decision rule is the Maximum
Aposteriori Probability (MAP). For large n, this can be translated
to a KL-divergence decision rule: classify Xn in set A0 if

D(P̂Xn ||P0) < D(P̂Xn ||P1),
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where P̂Xn is the empirical distribution of Xn, and D(·||·) is the
Kullback-Leibler distance between distributions [5]. Then, the ex-
ponent of the probability of error (at each node) is given by the
Chernoff information [5]:

C(P0, P1) = − min
0≤α≤1

log

 X
xn

P
α
0 (xn)P α

1 (xn)

!

= max
0≤α≤1

(1 − α)Dα(P0||P1),

where Dα(P ||Q) is the α-divergence between distributions P, Q.
Moreover, the overall probability of error Pe of the ISPDT is upper-
bounded by the sum of the probabilities of error at each node.
Hence, the exponent of Pe is the minimum of all the exponents.
Finally, different class label encodings yield different trees (and
hence, different Pe). Therefore, finding the tree that has the maxi-
mum probability of error exponent (minimum probability of error,
for sufficiently large n) entails computing the following:

T̂ = arg max
Tree T

min
Internal node j in T

max
αj ,P0(j),P1(j)

(1 − αj)Dαj
(P0(j)||P1(j)),

where P0(j), P1(j) are the mixture distributions that result from
splitting node j.

In the following, we will see heuristics for building Iterative
Denoising Trees that try to optimize the above quantities.

4. HEURISTICS FOR GROWING ISPDTS

As we mentioned above, the conditional distribution that generates
the data sequences (given the hidden labels) is unknown. Hence,
it is impossible to compute the above information-theoretic quan-
tities precisely. However, for sufficiently large n, where the law of
large numbers starts to have an effect, we have the following (the
proof appears in [6]).

• The mutual information I(Y ; Z) can be approximated by

X
Internal node j

N0(j)

M
D(P̂0(j)||P̂ (j)) +

N1(j)

M
D(P̂1(j)||P̂ (j))

(1)

where P̂0(j), P̂1(j) are the empirical distributions of the data
that follow the left or right branch of node j, P̂ (j) is the overall
empirical distribution of the data in node j, N0(j), N1(j) are
the number of data points that follow the left or right branch,
and M is the total number of data points.

• The exponent of the probability of error of the ISPDT is ap-
proximated by

min
Internal node j

max
αj

(1 − αj)Dαj
(P̂0(j)||P̂1(j)), (2)

where P̂0(j), P̂1(j) are as above.

Hence, in both cases, we need to estimate the empirical distribu-
tions P̂0, P̂1 at each node. But, in order to overcome the data
sparseness problem due to finite n, we need to perform dimen-
sionality reduction before we compute the empirical distributions.
In our experiments, the dimensionality reduction is done through
Principal Components Analysis (other projection techniques, e.g.,
Wavelet Packet Decomposition, can be used, too). Then, depend-
ing on the particular optimization objective (mutual information

or probability of error) we perform the following heuristics at each
node:

• Mutual Information: We perform a number of linear projec-
tions of the sparse empirical distributions of the data objects,
to a lower-dimensional simplex (e.g., 3-dimensional). For each
projection, we apply Chou’s algorithm [7] (which is a variant of
K-Means) and we partition the data into two clusters. The dis-
tributions P̂0, P̂1 in (1) are the centroids of these clusters, and
the transformation/clustering which is chosen is the one which
maximizes the score (1).

• Probability of error: As above, we perform a number of low-
dimensional projections, and for each projection we perform a
number of random splits of the data (e.g., using Chou’s algo-
rithm with random starting points). We use the resulting clus-
ters as “seeds” for a maximum-likelihood approach, inspired by
Yarowsky’s decision lists [8], to further improve the partition:
from the seeds, we compute the empirical distributions P̂0, P̂1

corresponding to each cluster. Then, for each data point, we
compute the log-likelihood ratio with respect to P̂0, P̂1, and we
sort the points. This sorted list of log-likelihood ratios will give
us an indication of which data points can be discriminated more
easily than others. By choosing a proportion of those objects
with the highest (or, lowest negative) log-likelihood ratios, we
create two new clusters and we re-estimate the empirical distri-
butions; we then re-compute the log-likelihood ratios, and we
repeat the whole procedure until convergence. This procedure
tries to approximate an optimum decision rule, where the class
probabilities are computed “on-the-fly”. The resulting P̂0, P̂1

are then fed into (2), and the “maximizing” α is then computed
by an exhaustive search through a discretization of the interval
(0, 1). Finally, among all the resultant clusterings (per projec-
tion and initial random splits), we choose the one which gives
the highest value in (2).

For deciding when to stop growing the tree, we perform the
following: (i) For the mutual information case, we split the node
which yields the highest increase in total score (1), until a specified
number of leaves has been reached, or the increase in total score
is below a threshold τ . (ii) For the probability of error case, we
split the node that yields the smallest decrease in score (2), until
a specified number of leaves has been reached, or the score (2) is
below a threshold ν.

5. EMPIRICAL RESULTS FROM MULTISPECTRAL
IMAGING

To demonstrate the usefulness of the iterative denoising procedure
with information-theoretic optimization criteria, we performed ex-
periments with aerial image data. Each data point corresponds to
a multidimensional pixel—each dimension represents a particular
frequency band. Furthermore, the spectrum of each pixel is ac-
tually a distribution of energy over frequencies. Hence, with the
appropriate normalization, the spectrum of a data point/pixel plays
the role of its “empirical distribution”.

The class labels of the pixels correspond to different types
of vegetation: runway, pine, scrub and swamp. Raftery’s EM-
based clustering software mclust [3], applied on the original high-
dimensional data, yields a 24% misclassification rate.

Using mutual information as the objective optimization score,
and setting the target number of leaves to 4, the ISPDT first splits
the root into two sets, one of which is pure, contains 100% of

V - 1083

➡ ➡



Fig. 2. The ISPDT, when the objective is maximization of mutual information. Depiction of labels is as follows: runway corresponds
to circles, pine to triangles, scrub to crosses and swamp to x’s. Each node is transformed differently (the corresponding 2 principal
components are shown). Cluster boundaries are depicted with dashed lines.

the runway pixels and becomes a leaf. The other node is further
split into two sets: one becomes a leaf and contains 96.2% of the
swamp pixels (and less than 5% of the other classes), and the other
is again divided into: 71.2% of pine and 92.5% of scrub. The total
misclassification rate is 11.5%. Figure 2 shows the iterative de-
noising tree; each node shows the data points under the projection
that maximizes the mutual information objective. Finally, using α-
divergences as the objective optimization score, the ISPDT has the
same structure as above, but slightly different leaf compositions:
100% of runway, 96% of scrub (but with 20% of pine), 87% of
swamp, and 76% of scrub, respectively. The total misclassifica-
tion rate is 11%.

In all cases, each node of the ISPDTs transforms the data dif-
ferently from the other nodes, driven by a local optimization crite-
rion. This transformation corresponds to feature extraction; differ-
ent features are suppressed (or amplified) by each transformation
(corpus-dependent-feature-extraction property [4]).

We have also performed experiments with other types of data;
in particular, we obtained interesting results in text categorization,
where the task is to cluster together documents that have some sig-
nificant association (they are on the same topic, genre, etc). Pre-
liminary results [6] have shown the ISPDTs are very successful in
this task, since different transformations amplify the significance
of different words in the documents, thus permitting reasonable
discrimination.

6. CONCLUSIONS

In this paper, we presented two criteria for transforming and split-
ting nodes in an ISPDT for unsupervised classification. The split-
ting criterion at each node is either a maximization of a weighted

sum of KL-divergences, or the maximization of an α-divergence.
These criteria correspond, as the data dimensionality goes to in-
finity, to: (i) the maximization of mutual information between the
class label and the path from the root to the leaf in the ISPDT,
and (ii) the minimization of the probability of misclassification, re-
spectively. We demonstrated the effectiveness of these techniques
using real multispectral imaging data.
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