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ABSTRACT

The images generated by varying the underlying articulation pa-
rameters of an object (pose, attitude, light source position, and so
on) can be viewed as points on a low-dimensional image param-
eter articulation manifold (IPAM) in a high-dimensional ambient
space. In this paper, we develop theory and methods for the inverse
problem of estimating, from a given image on or near an IPAM, the
underlying parameters that produced it. Our approach is centered
on the observation that, while typical image manifolds are not dif-
ferentiable, they have an intrinsic multiscale geometric structure.
In fact, each IPAM has a family of approximate tangent spaces,
each one good at a certain resolution. Putting this structural aspect
to work, we develop a new algorithm for high-accuracy parameter
estimation based on a coarse-to-fine Newton iteration through the
family of approximate tangent spaces. We test the algorithm in
several idealized registration and pose estimation problems.

1. INTRODUCTION

Multiscale methods have proven particularly useful in three spe-
cific image processing tasks: data compression [1], noise removal
[2], and fast registration/template matching [3–5] The last task
seems very different from the first two. Indeed, registration is pur-
sued by a different research community, and the common theoret-
ical model [6] that explains the success of multiscale methods in
the first two tasks apparently has nothing to do with the empirical
basis for fast registration methods.

In this paper we develop a preliminary theoretical framework
for understanding the effectiveness of multiscale algorithms for a
range of image understanding problems – including image regis-
tration – based on the structure of families of unregistered images.
We study image articulation families, in which a collection of im-
ages differ one from the other through the action of some param-
eter controlling location, pose, lighting, and so on. The problem
of recovering such a parameter from image data includes image
registration/template matching as a special case.

We view the collection of images formed by such an image ar-
ticulation family as a manifold of images embedded in a high- (ac-
tually infinite-) dimensional space. Typically, this manifold turns
out to be non-differentiable, which implies that a multiscale struc-
ture exists, as opposed to a monoscale structure which would occur
if the manifold were differentiable.

We consider the problem of recovering, from a single image
or movie, the articulation parameters using this multiscale view-
point. While estimating an articulation parameter appears like a
standard problem in nonlinear estimation that can be solved us-
ing calculus, due to the non-differentiability of image manifolds
we find that calculus only works to a certain accuracy at a certain
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scale. Therefore we propose a multiscale estimation process in
which the scale changes as the accuracy demands increase. This in
some ways mimics now-standard methods of image registration,
but gives them a new quantitative justification. A forthcoming ar-
ticle [7] expands upon this exposition.

2. THE MANIFOLD VIEWPOINT

2.1. Imaging parameter articulation manifolds (IPAMs)

Consider a mathematical model of images as functions I : R2 �→
R. We are interested in families of images formed by varying a
parameter θ ∈ Θ. For example, θ could be a translation parameter
specifying the location of an object in the scene; or an orientation
parameter specifying the pose; or an articulation parameter spec-
ifying, for a composite object, the relative placement of mobile
components. The image formed with parameter θ is a function
fθ : R2 �→ R; the corresponding family is the imaging parameter
articulation manifold (IPAM) F = {fθ : θ ∈ Θ}. The equation
I = fθ is our way of saying that the observed image I is a par-
ticular member fθ of the family, with parameter θ. In all cases we
take Θ as an open set in d-dimensional Euclidean space, and we
assume that the relation θ �→ fθ is one-to-one.

The set F is a collection of functions, and we suppose that all
these functions are square-integrable: F ⊂ L2(R2). Equipping F
with the L2 metric, we induce a metric on Θ

µ
“
θ(0), θ(1)

”
= ‖fθ(0) − fθ(1)‖L2 . (2.1)

Assuming that θ �→ fθ is a continuous mapping for the L2 metric,
(Θ, µ) is a nice metric space. Here are some examples.
Translating disk. Here let f0 be the indicator function of the
unit disk, and let Θ = R2 act on the disk according to fθ(x) =

f0(x − θ); see Fig. 1(a). It is easy to see that µ(θ(0), θ(1)) =

m(‖θ(0) − θ(1)‖), for a monotone increasing function m ≥ 0,
m(0) = 0. In fact, if we let Bx denote the disk centered at x ∈
R2, then

m(ρ) = Area(B(0,0)�B(ρ,0))
1/2,

where � denotes the symmetric difference (see Fig. 1(b)). Similar
models can be set up for translates of the square or another set and
for wedgelets, which are useful for modeling object boundaries in
images [8].
Three-dimensional objects. Our model is not limited to artic-
ulations in the plane; we may consider entirely different imaging
modalities, such as the photography of a 3-D object. In this case,
the object may be subject to rotations (Θ = SO(3)), translations
(Θ = R3), or a combination of both; the metric simply involves
the difference between two rendered images as in (2.1). Figure 5
shows an example involving an icosahedron. Additional articu-
lation parameters, such as camera position or lighting conditions,
could also be considered.
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Fig. 1. (a) Parameterization of articulated disk image fθ . (b) Sym-
metric difference (shaded) between unit disk and shifted version.

A range of similar models is discussed in [9, 10]; the most
elaborate such involve combining some of the above models to
create, for example, articulating cartoon faces.

2.2. Non-differentiability

The metric spaces given above all have a non-Lipschitz relation
between the metric distance and the Euclidean distance. As one
can check by detailed computations [10], we have

µ(θ(0), θ(1)) ≥ c‖θ(0) − θ(1)‖1/2
2 as µ → 0.

The exponent 1/2 – rather than 1 – implies that the parametriza-
tion θ �→ fθ is not differentiable. This failure is not something
removable by mere reparametrization; no parametrization exists
under which there would be a differentiable relationship.

We can view this geometrically. The metric space M =
(Θ, µ) is isometric to F = (F, ‖ · ‖L2). F is not a smooth man-
ifold; there simply is no system of charts that can make F even a
C1 manifold. At base, the lack of differentiability of the manifold
F is due to the lack of spatial differentiability of these images [10].
In brief, images have edges, and if the locations of edges move as
the parameters change then the manifold is not smooth.

2.3. Approximate tangent planes by local PCA

An intrinsic way to think about non-smoothness is to consider
approximate tangent planes generated by local principal compo-
nent analysis (PCA). Suppose we pick an ε-neighborhood of some
θ(0) ∈ Θ; this induces a neighborhood Nε(fθ(0) ) around the point
fθ(0) ∈ F. We define the ε-tangent plane to F at fθ(0) as follows.
We place a uniform probability measure on θ, inducing a mea-
sure ν on the neighborhood Nε(fθ(0) ). We take the first d “princi-
pal components” of the “point cloud” defined by random sampling
from F according to ν on the ε-neighborhood. The resulting tan-
gent plane T ε

f
θ(0)

(F ) is simply an approximate least-squares fit to

the manifold over the neighborhood Nε(fθ(0) ).
If the manifold were differentiable, then the approximate tan-

gent planes T ε
f

θ(0)
(F ) would converge to a fixed d-dimensional

space as ε → 0; namely, the plane spanned by the d directional
derivatives ∂

∂θi
fθ

˛̨
θ=θ(0) , i = 1, 2, . . . , d. However, when these

do not exist, the approximate tangent planes do not converge as
ε → 0, but continually “twist off” into other dimensions.

As an example, consider the “translating disk” model, so that
the underlying parametrization is 2-D and the tangent planes are
2-D as well. Figure 2(a) shows the approximate tangent plane ob-
tained from this approach, at scale ε = 1/4. The tangent plane has
a basis consisting of two elements, each of which can be consid-
ered an image. Figure 2(b) shows the tangent plane basis images at
the finer scale ε = 1/8. It is visually evident that the tangent plane
bases at these two scales are different; in fact the angle between
the two subspaces is approximately 30◦. Moreover, since the basis

(a) (b)

Fig. 2. Tangent plane basis vectors estimated using local PCA.
(a) Scale ε = 1/4. (b) Scale ε = 1/8.

(a) (b)

Fig. 3. Tangent plane basis vectors of smoothed manifold Fs.
(a) Scale s = 1/8. (b) Scale s = 1/16.

elements resemble annuli of shrinking width and growing ampli-
tude, it is apparent for continuous-domain images that as ε → 0,
the tangent plane bases cannot converge in L2.

2.4. Approximate tangent planes by regularization

The “twisting off” phenomenon can be understood as the exis-
tence of an intrinsic multiscale structure to the manifold. Tangent
planes, instead of being associated with a location only, as in tradi-
tional monoscale analysis, are now associated with a location and
a scale.

For a variety of reasons, it is convenient in formalizing this no-
tion to work with a different notion of approximate tangent plane.
We first define the family of regularized manifolds as follows. As-
sociated with a given IPAM, we have a family of regularization op-
erators Φs that act on functions f ∈ F to smooth them; the param-
eter s > 0 is a scale parameter. For example, for the translated disk
model, we let Φs be the operator of convolution with a Gaussian of
standard deviation s, Φsf = φs � f . We also define fθ,s = Φsfθ .
The functions fθ,s are smooth, and we obtain, for each s > 0, a
manifold Fs. The operator family Φs should have the property
that, as we smooth less, we do less: Φsfθ →L2 fθ , s → 0. It
follows that, at least on compact subsets of F,

Fs →L2 F, s → 0. (2.2)

Definition 2.1 The approximate tangent plane at scale s > 0
T (s, θ(0);F) is the exact tangent plane of the approximate mani-
fold Fs: Tf

θ(0),s
(Fs).

T (s, θ(0)) is the affine span of the functions ∂
∂θi

fθ,s

˛̨
θ=θ(0) ,

i = 1, 2, . . . , d. This notion of approximate tangent plane is dif-
ferent than the more intrinsic local PCA approach but is far more
amenable to analysis and computation. In practice, the two no-
tions are similar. Convolution averages an image fθ with shifted
versions of itself; for the translated disk model, these shifted ver-
sions simply correspond to nearby points on the manifold. Taking
the derivative of this “averaged” manifold is analogous to the local
PCA technique; [7] discusses this connection in more depth.

As an example, consider again the “translating disk” model.
Figure 3(a) shows the tangent plane obtained from this approach,
at scale s = 1/8. Figure 3(b) shows the tangent plane at a finer
scale, s = 1/16. It is again visually evident that the tangent plane
bases at the two scales are different, with behavior analogous to
the bases shown in Fig. 2.
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3. HIGH-RESOLUTION PARAMETER ESTIMATION

With the multiscale viewpoint as background, we now consider the
problem of inferring parameters from individual images.

3.1. The problem

We let {fθ : θ ∈ Θ} be an articulation family. We are given an
image I that is known to be of the form I = fθ for an unknown
θ ∈ Θ. We aim to recover θ from I , so conceptually we seek a
procedure Q that generates parameter estimates θ̂ = Q(I). There
is also a noisy version of the problem, where I ≈ fθ , and we wish
to recover an approximation to θ. We put the issue of noise aside
for the moment.

A natural approach to the problem is the method of nonlinear
least-squares. We pose the objective function J(θ) = ‖fθ − I‖2

2,
and we seek the minimizing θ: Q(I) = argminθJ(θ), supposing
that the minimum is uniquely defined.

3.2. Inspiration

Standard nonlinear parameter estimation [11] tells us that, if J is
differentiable, then we can use calculus to refine an initial guess
θ(0) at the unknown parameter; we take a Newton step from that
guess in the direction of the minimum. Moreover, if the initial
guess is reasonably good, then the step from θ(0) to θ(1) will place
us dramatically closer to the minimum, squaring the error. Contin-
uing with θ(2), θ(3), etc., we obtain superlinear convergence.

In the case of a differentiable manifold, iteration k + 1 of this
algorithm would proceed as follows:

1. Compute/estimate the local tangent vectors v
(k)
i =

∂
∂θi

fθ

˛̨
θ=θ(k) , i = 1, 2, . . . , d.

2. Find the orthogonal projection of the estimation error onto
this tangent space, and expand the projection in terms of the
tangent vectors e(k) = Proj((I − fθ(k) ) → Tf

θ(k) (F )) =Pd
i=1 αiv

(k)
i .

3. Use the expansion coefficients to update the estimate
θ
(k+1)
i ← θ

(k)
i + αi, i = 1, 2, . . . , d.

In our setting, however, the tangent vectors v
(k)
i do not exist, mak-

ing it impossible to implement such an algorithm. We turn again
to the regularization process in order to remedy this situation.

3.3. Multiscale Newton algorithm

As discussed above, the problem of differentiability can be allevi-
ated by regularizing the images fθ . Thus, navigation is possible
on any of the regularized manifolds Fs using Newton’s method as
described above. This fact, in conjunction with the convergence
property (2.2), suggests a multiscale technique for parameter esti-
mation.

The idea is to select a sequence of scales s0 > s1 > · · · > sK ,
and to start with an initial guess θ(0). At each scale we take a New-
ton step on the corresponding smoothed manifold. In particular,
iteration k + 1 of the algorithm would proceed as follows:

1. Compute the local tangent vectors v
(k)
i,sk

on the smoothed
manifold Fsk at the point fθ(k),sk

.

2. Project the estimation error Isk − fθ(k),sk
(relative to the

regularized image Isk = φsk � I) onto the tangent space
T (sk, θ(k)), and expand this in terms of the tangent vectors.

Table 1. Estimation errors of multiscale Newton iterations, trans-
lating disk, no noise.

s θ1 error θ2 error image MSE
Initial −1.53e-01 1.92e-01 9.75e-02

1/2 −2.98e-02 5.59e-02 3.05e-02
1/4 −4.50e-04 1.39e-03 1.95e-04
1/16 −1.08e-06 8.62e-07 8.29e-10

1/256 1.53e-08 1.55e-07 1.01e-10

Table 2. Estimation errors of multiscale Newton iterations, trans-
lating disk, with noise. MSE between noisy image and true disk
= 4.0237.

s θ1 error θ2 error image MSE
Initial −1.53e-01 1.92e-01 4.1262

1/2 −1.92e-02 4.30e-02 4.0427
1/4 7.45e-04 1.66e-03 4.0241
1/16 −1.21e-03 4.63e-03 4.0255

1/256 9.08e-04 1.32e-03 4.0239

3. Use the expansion coefficients to update the estimate and
obtain θ(k+1).

Under certain conditions on the accuracy of the initial guess and
the sequence {sk} it can be shown that this algorithm provides
estimation accuracy ‖θ − θ(k)‖ < cs2

k. Ideally, we would be able
to square the scale between successive iterations, sk+1 = s2

k; a
more detailed discussion is included in [7].

4. EXAMPLES

4.1. Translating disk

As a basic exercise of the proposed algorithm, we attempt to esti-
mate the articulation parameters for a translated disk. The process
is illustrated in Fig. 4. The observed image I is shown at the top;
the leftmost image on the second row is the initial guess fθ(0) . For
this experiment, we create 256 × 256 images with “subpixel” ac-
curacy (each pixel is assigned a value based on the proportion of
its support that overlaps the disk).

We ran the multiscale estimation algorithm using the sequence
of stepsizes s = 1/2, 1/4, 1/16, 1/256. Fig. 4 shows the basic
computations of each iteration. Note the geometric significance of
the smoothed difference images Is − fθ(k),s; at each scale this im-
age is projected onto the tangent plane basis vectors. Table 1 gives
the estimation errors at each iteration, both for the articulation pa-
rameters θ and the mean square error (MSE) of the estimated im-
age. Using this sequence of scales, we observe rapid convergence
to the correct articulation parameters with accuracy far better than
the width of a pixel, 1/256 ≈ 3.91e − 03.

We now run a similar experiment for the case where the obser-
vation I = fθ + n, where n consists of additive white Gaussian
noise of variance 4. Using the same sequence of smoothing filter
sizes, the results are given in Table 2. Note that the estimated artic-
ulation parameters are approximately the best possible, since the
resulting MSE is approximately equal to the noise energy.

4.2. 3-D object motion

We now simulate the photography of a 3d icosahedron. Our image
model includes a directional light source (with location and inten-
sity parameters assumed known) and a known camera position. In
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Observation I

Estimate Error Filtered Tangent Tangent
fθ(k) I − fθ(k) Is − fθ(k),s v

(k)
1,s v

(k)
2,s

s 
=

 1
/2

s 
=

 1
/4

s 
=

 1
/1

6
s 

=
 1

/2
56

Fig. 4. Multiscale estimation of translation parameters for ob-
served disk image. Each row corresponds to the smoothing and
tangent basis vectors for one iteration.

this experiment, the parameter space Θ is 6-D; the object articu-
lations are 3 rotational coordinates and 3 translation parameters.
We consider color images, treating each image as an element of
R256×256×3 . Figure 5 shows the successful estimation of the ar-
ticulation parameters for a noisy image. For this example, we must
use a slightly less ambitious sequence of smoothing filters.

5. DISCUSSION AND CONCLUSIONS

Our multiscale framework for estimation with IPAMs shares com-
mon features with a number of practical image registration algo-
rithms; space considerations permit discussion of only a few here.
Irani and Peleg [3] have developed a popular multiscale algorithm
for registering an image I(x) with a translated and rotated version
for the purposes of super-resolution. They employ a multiscale
pyramid to speed up the algorithm and to improve accuracy, but
a clear connection is not made with the non-differentiability of
the corresponding IPAM. While Irani and Peleg compute the tan-
gent basis images with respect to the x1 and x2 axes of the image,
Keller and Averbach [4] compute them with respect to changes
in each of the registration parameters. They also use a multi-
scale pyramid and conduct a thorough convergence analysis. Bel-
humeur [5] develops a tangent-based algorithm that estimates not
only the pose of a 3-D object, but also its illumination parameters.

In addition to the convergence analysis mentioned in Sec. 3.3,
a number of issues remain open. For instance, with noisy images
the multiscale tangent projections will reach a point of diminish-
ing returns where finer scales will not benefit; we must develop a
stopping criterion for such cases. Additional issues revolve around
efficient implementation. We believe that a sampling of the tan-
gent planes needed for the projections can be precomputed and
stored using the multiscale representation of [12]. Moreover, since
many of the computations are local (as evidenced by the support
of the tangent basis images in Figs. 2 and 3), we expect that the
image projection computations can be implemented in the wavelet

Original Observed
fθ I = fθ + noise

Estimate Oracle Error Estimate Oracle Error
fθ(k) fθ − fθ(k) fθ(k) fθ − fθ(k)

In
iti

al

s 
=

 1
/8

s 
=

 1
/2

s 
=

 1
/1

6

s 
=

 1
/4

s 
=

 1
/2

56

Fig. 5. Estimation of articulation parameters for 3-D icosahedron.

domain. This would also lead to a fast method for obtaining the
initial guess θ(0) with the required accuracy. We will discuss these
points and more in greater depth in a forthcoming article [7].
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