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ABSTRACT

Local manifold learning methods produce a collection of
overlapping local coordinate systems from a given set of
sample points. Alignment is the process to stitch those local
systems together to produce a global coordinate system and
is done through the computation of the eigen-subspace of
a so-called alignment matrix. In this paper, we present an
analysis of the eigen-structure of the alignment matrix giv-
ing both necessary and sufficient conditions under which the
null space of the alignment matrix recovers the global coor-
dinate system. We also show by analyzing examples that the
gap in the spectrum of the alignment matrix is proportional
to the size of the overlap of the local coordinate systems.
Our results pave the way for gaining better understanding
of the performance of local manifold learning methods.

1. INTRODUCTION

For a parameterized manifold of dimension � defined by a
mapping � � � 	 �  , where � � � , and � open in� � , suppose we have a set of points � � � � � � � � � sampled
possibly with noise from the manifold, i.e.,

�  " � % '  ) * ,  � 0 " 3 � 5 5 5 � 7 � (1.1)

where ,  ’s represent noise. We are interested in recovering
the '  ’s and/or the mapping � % � ) from the �  ’s. This pro-
cess is generally known as manifold learning or nonlinear
dimension reduction [3, 5]. A class of so-called local man-
ifold learning methods start with estimating a collection of
overlapping local coordinate systems around each sample
points1 and align (either implicitly or explicitly) those local
coordinate systems to obtain a global one and thus recover-
ing the '  ’s. Examples of those local methods include LLE:
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1Actually, each local coordinate system can cover a much larger piece
of the manifold, and we will call it a local patch.

(Local Linear Embedding) [3], manifold charting [1], Hes-
sian LLE [2] and LTSA (Local Tangent Space Alignment)
[6]. The alignment idea in particular was also discussed in
[4]. The actual alignment process is done by computing the
eigenvectors of a so-called alignment matrix correspond-
ing to the smallest eigenvalues that have a gap to the other
eigenvalues. In practical applications, however, this gap is
not clear, and as we will see later that unwanted eigenmodes
can be mixed in giving rise to inaccurate recovery of the '  ’s.

The focus of this paper is to gain a better understanding
of the alignment process by analyzing the eigen-structure of
the alignment matrix. In particular, we derive both neces-
sary and sufficient conditions under which the null space of
the alignment matrix recovers the '  ’s given that each local
coordinate system is computed exactly. By way of analyz-
ing a simple case of two overlapping local pieces, we also
show that the gap in the spectrum of the alignment matrix
is proportional to the square of the size of the overlap of
the local coordinate systems. Proofs of the results will be
omitted due to space constraints

NOTATION. We use = to denote a column vector of all
ones the dimension of which should be clear from the con-
text. > % � ) and � % � ) denote the null space and range space
of a matrix, respectively. For an index set C " E 0 � � 5 5 5 � 0 F G ,H % � � C ) denotes the submatrix of

H
consisting of columns ofH

with indices in C . A similar definition is used for the rows
of a matrix.

2. AN ILLUSTRATIVE EXAMPLE

In this section, we present a simple example to illustrate
some important issues in the alignment process. We gen-
erate 7 two-dimensional points K " E � � � 5 5 5 � � � G , where�  " E Q  R S U % Q  ) � Q  U [ \ % Q  ) G ^ with Q � � 5 5 5 � Q � , 7 " 3 a a ,
equally spaced in E b c d � e b G . The exact arc length coordi-
nates for each of the points can be computed as

'  " g i j
i k m 3 * Q o � Q �

where Q q is a constant chosen such that the mean of ' � � 5 5 5 � ' �
is zero. First we choose 3 r sections (subsets of points in K )

V - 10690-7803-8874-7/05/$20.00 ©2005 IEEE ICASSP 2005

➠ ➡



−10 0 10 20
−15

−10

−5

0

5

10

−50 0 50

−0.1

−0.05

0

0.05

0.1

0.15

−50 0 50
−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2

Fig. 1. Plots of the spiral data points and the basis vectors
of � .

� � � � � � � � � � , � �  � � � � �  � , where the index sets � � are
defined by� � � � 	 � �  � � � � � � � 	 � � � � � � � � � � � � � � " � � $ % � ( � � � , , �

It is easy to see that each pair of two consecutive sec-
tions share two points. We construct the alignment matrix� by computing the orthogonal projections � � such that� � � � � - �� � � � , where - � is the orthogonal projection of

� � on to the tangent space � . 0 � � � � 2 4� � � � � , the column
space of � � 2 4� � � � , and 4� � denotes the column mean of � �
(the details of this process for � is discussed in the next sec-
tion). An orthonormal basis for the null space of � is given
by � � �  � with  � �  ! � � � � �  $ � � . In the left panel of Figure
1 we plot the given set of two-dimensional data points. In
the middle panel, we plot the components of the computed

 � ’s against the original  � ’s. The plotted points are approxi-
mately on a straight line, indicating an accurate recovery of
the original  � ’s.

If the minimal number of the shared points is reduced
to be one, the null space of � will have dimension more
than two. The null space not only contains � and  but
also other unwanted vectors. For example, if we delete the
last columns in the two sections � 7 and � ! 9 , respectively,� then has three linearly independent eigenvectors corre-
sponding to the zero eigenvalue which include � ,  and an-
other vector. It is not clear how to separate out  from the
null space of � if other unwanted eigenvectors are mixed.
In the right panel of Figure 1, we plot such an eigenvector
against  , showing that it is not proportional to  anymore.

The above example illustrates the importance of the null
space structure of the alignment matrix for manifold learn-
ing. The goal of this paper is to gain a better understanding
of this structure. We now proceed more formally to our dis-
cussion.

3. ALIGNMENT MATRIX AND ITS NULL SPACE

Let : � �  ! � � � � �  $ � < & ( = $ correspond to the ) * -
dimensional parameter vectors given in (1.1). A submatrix
of : consisting of a subset of the column vectors in : is

called a section of : , each of them corresponding to the
parameter vectors in a local patch of the underlying mani-
fold. For a collection of sections > : ! � � � � � : @ A , we denote: � � �  � B � � � � �  � D - � < & ( = . -

. Before we proceed, we need
the following definition.

Definition 3.1. Let E F � > � � A J� L ! and E N � > O � A Q � L ! be
two sets of column vectors of the same dimension. Denote
by E R � E F U E N � > X ! � � � � � X Y A the set of column vectors
that are in the intersection of E F and E N . We say the two setsE F and E N are fully overlapped if � X ! � � � � � X Y � 2 4X � � is of
full row-rank, where 4X is the mean of the vectors in E R , i.e,
the dimension of the affine space spanned by � X ! � � � � � X Y � is
the same as the dimension of the columns vectors.

It is easy to verify that � X ! � � � � � X Y � 2 4X � � is of full row-
rank if and only if � � � � X ! � � � � � X Y � � � is of full column-rank.

We now consider a collection of sections > : ! � � � � � : @ A
of : such that] @

� L ! >  � B � � � � �  � D - A � >  ! � � � � �  $ A �

and we are interested in a particular kind of collections of
sections which is defined below.

Definition 3.2. We say > : ! � � � � � : @ A is connectedly over-
lapped, if there is a permutation ` ! � 1 1 1 � ` @ of  � 1 1 1 � a such
that >

]
.
� L ! : b - � : b D d B A is fully overlapped for e �  � 1 1 1 � a 2

 . Specially, we say : � itself is connectedly overlapped, if
� � � : �� � is of full column-rank.

A subset > : � B � � � � � : � D A is said to be a maximally con-
nectedly overlapped subset of > : ! � � � � � : @ A , if > : � B � � � � � : � D A
itself is connectedly overlapped and no other section can
be added so that the resulting set is still connectedly over-
lapped.

For a section : � , let f � be the orthogonal projection onto
the orthogonal complement � . 0 � g � � � � : �� � � of � . 0 � � � � � : �� � � ,
i.e., f � � � � : �� � � � . Embed f � in an ) -by- ) matrix � � such
that the � � i � � j � element of � � is the � l � m � element of f � , and
zero entries elsewhere. The � -th orthogonal projection � � in
the higher dimensional space & $ can be represented as

� � � E � f � E �� � (3.2)

where E � < & $ = . -
is the selection matrix corresponding to

the index set � � � > � ! � � � � � � . - A of : � such that : E � � : � .
For two index sets, � � and � q , we denote by � � q � � � U � q
the intersection of � � and � q , the corresponding intersection
of the two sections is denoted by : � q � : � � � � � q � .

The so-called alignment matrix is the sum of the a or-
thogonal projection matrices > � � A , assuming there are a lo-
cal patches. The alignment matrix � is defined as

� �
@r

� L !
� � � � E ! � � � � � E @ � s < 0 t � f ! � � � � � f @ � � E ! � � � � � E @ � � �

(3.3)
We first characterize the null space of � when there are

only two overlapping local patches, i.e., two sections. This
will pave the way for analyzing the more general case.
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Fig. 2. Two possible layouts for the global coordinates.

Theorem 3.1. Assume � � � , and � � � � �� � is of full
column-rank. Then we have

1) If 	 � � � �  � � � � � � � � � � � , then

� � �
�

� � � � � �� � � � � � � �
�

� � � � � �
� � � �

2) If � � � � �� � is of full column-rank, then 	 � � � � � � is
fully overlapped if and only if 	 � � � �  � � � � � � � � � � � .

EXAMPLE 1. We use a simple example with � �  to
illustrate the case when the two sections are not fully over-
lapped. Consider the situation depicted in Figure 2. The
first section consists of three points (denoted by short ver-
tical bars) connected by a thick line, and the second one
two points connected by a thin line. The two sections share
a single point denoted by a circle, i.e., the thick line seg-
ment and the thin one corresponding to the two sections are
connected at a single point. Within the first line segment,
let the distance between the first and the second point be�

� and that between the second point and the third point be�
� , and within the second line segment, let the distance be-

tween the first and the second point be
�

� . In this case, it
can be shown  " � � 	 � � � � � � and the three basis vectors
can be chosen as �  �  �  �  � � , � � � � ( 
 � � ( � � � ( � � � with


 �
�

� � � �
�

� (
�

� � � �
�

� (
�

� (
�

� and � an arbitrary
real number (this corresponds to the left panel of Figure 2),

� � � � ( 
 � � ( � � � ( � � � with 
 �
�

� � � �
�

� (
�

� � � ��
� (

�
� �

�
� and � an arbitrary real number (this corre-

sponds to the right panel of Figure 2 where the second line
segment folds back to the first one).

Now we present results for the general � � � case. We
first present some necessary conditions.

Theorem 3.2. Let � � � � �/ � be of full column-rank for
0 �  � � � � � � . If

	 	 � � �  � � � 	 � � � � � � � �

then
1) 	 � � � � � � � � � � is connectedly overlapped, or
2) 	 � � � � � � � � � � is not connectedly overlapped, and for

any maximally connectedly overlapped subset 	 � / � � � � � � � / � � ,
	 � � / � � � � � � � / � � � � � / � � � � � � � � � / � � � is fully overlapped.

section 1 section 2 section 3 

section 4 

Fig. 3. Overlapping patterns of four sections.

section 1 section 2 section 3 

section 4 

section 5

Fig. 4. Adding one more section.

EXAMPLE 2. We show that the condition 2) in Theo-
rem 3.2 is not sufficient. In Figure 3 we plot an example of
four sections with no pair of two sections fully overlapped.
Obviously, each section � / itself is a maximal connectedly
overlapped subset and the union of its complement sections
is fully overlapped with � / . So the condition 2) in Theorem
3.2 is satisfied. However, 	 � � � ��  � � � � � � � � � � � .

To give sufficient conditions, it is required to impose
more constraints on a maximal connectedly overlapped sub-
set and/or it complement subset. Below we give such suffi-
cient conditions imposing a constraint of connected overlap
on the complement subset.

Theorem 3.3. Let � be defined as before. If

1) 	 � � � � � � � � � � is connectedly overlapped, or

2) 	 � � � � � � � � � � is not connectedly overlapped, but there
is a maximally connectedly overlapped subset 	 � / � � � � � � � / � �
such that 	 � / � � � � � � � � � / � � is also a connectedly overlapped
subset and 	 � � / � � � � � � � / � � � � � / � � � � � � � � � / � � � is fully over-
lapped, then

	 	 � � �  � � � 	 � � � � � � � �

EXAMPLE 3. If we add section 5 in Example 2, see Fig-
ure 4, then for the resulting collection of the five sections,
condition 2) in Theorem 3.2 is also true but the conditions
of Theorem 3.3 are not satisfied. However, we still have the
null space of � that is spanned by � � � � � � .
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4. THE PRACTICAL CASE

The construction of the alignment matrix in the Section 3
assumes that we know the global coordinates � � ’s for each
section �� � . In practice, this information is not available. In-
terestingly, the above theorem is still true if for each � � we
know

� � � �
� � � � � �

� � � �
� which differs from � � 
 � �

� � �
� � � � � � �

� � �
� � �

by an affine transformation i.e., there are vector � � and non-
singular matrix � such that � � 
 � � � � � � � � � We have

� �� 
 � � � � �� �
�

� ��� � 	 � � �� 
 � � � � �� �
�

� � � � � � � � �� � � 	 �

It follows that

� � � � � � � � � �� � � 
 � � � � � � � � � �� � �

Therefore the following theorem is true.
Theorem 4.1. Let � � �  
 # � � � � �  , be  sections of � ,

� � 
 �
� �

� � � � � �
� �

� $ � be an coordinates that are affine to � � ,
and � � be the orthogonal projection onto the orthogonal
complement of � � � � �� � . Then � � � � � � � � � � � � � % � � � with

� defined as before by � � here. Furthermore, if � � � � is
connectedly overlapped, then % � � � 
 � � � � � � � � � � � � .

5. THE SMALLEST NONZERO EIGENVALUE OF
THE ALIGNMENT MATRIX

How well the null space of � is determined depends on the
size of its smallest nonzero eigenvalue. This has significant
ramifications when we need to use the small eigenvectors of

� to recover the � � ’s. Most of the results in this section will
be for the special case of  
 ' although generalization to
the more general case can be done as well. We first give a
characterization of the smallest nonzero eigenvalue of � .

Theorem 5.1. Let � � 
 � � � �� be the orthogonal pro-
jections onto the orthogonal complements of � � � � �� � , and�� � the embedded one of � � . Denote by � 
 � � � � � � with� � � 
 , and � � � 


�� � � / � � � 0 � �
�� � � / � � � 0 � ,  �
 � . Then the

smallest nonzero eigenvalue of � is given by�

 # � � � � �

�
0

�
�

�
� � � �

�
4 # � �

Specially, if  
 ' , then�

 # � � � � � � 0 � � � � � � 7 � � � 4 # � �

With the help of the above theorem, we now presents
some quantitative estimates of the smallest nonzero eigen-
value of � for the case of  
 ' assuming � 
 �  � � " �  7 �
and � � 
 �  � � " � and � 7 
 � " �  7 � , in particular we will
show that the smallest nonzero eigenvalue of � is propor-
tional to � � 9 � " � �% � � � � 7 where � 9 � ; � is the < -th largest

singular value of a matrix. In a sense, � 9 � " � �% � � � mea-
sures the strength of the overlap between � � and � 7 . We
will consider the case of < 
 # .

Theorem 5.2. Let � 
 � & � � � % � � & �7 � with & � � @ � $
,

 
 # � ' , % � @ � , & � and & 7 do not share any components.
Assume � � 
 � & � � � % � � and � 7 
 � % � � & � 7 � , ie., sections � �
and � 7 share � points which are the components of % . De-
note by �% the mean of % . Then the smallest nonzero eigen-
value of � is ) � + % � �% � + 7

7 � .
For Theorem5.2, we conjecture that similar results should

hold for < � # case by replacing + % � �% � + 7 with � 9 � " �
�% � � � . However, for  � ' case, it is still not clear how
to formulate the concept of the strength of overlaps in this
general case.

6. CONCLUDING REMARKS

The spectral properties of the alignment matrix plays an es-
sential role in using local methods for manifold learning.
The results proved in this paper represent the first step to-
wards a better understanding of those spectral properties
and their interplay with the geometric properties of the un-
derlying manifold. There are still several issues which de-
serve further investigation including 1) deriving a set of con-
ditions which are both necessary and sufficient for the null
space of the alignment matrix to recover the global coordi-
nates; 2) improving the quantitative results under more gen-
eral conditions; and 3) incorporating the effects of noise.
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