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ABSTRACT

The distributed nature of wireless sensor networks illustrates well
classical engineering tradeoffs: how to minimize communication
(and possibly computation) cost, and thus energy dissipation, while
maintaining acceptable performance levels in estimation and in-
ference applications. We study a simple sensor network under de-
pendent Gaussian noise and develop strategies for parameter es-
timation in a variety of communication scenarios. From an en-
ergy point of view, sending all data to a fusion center is the most
costly, but leads to optimum performance results. Processing data
at each sensor and sending parameter estimates and associated
quality measures is a reasonable communication saving procedure
and yet, in some cases, may lead to performance equivalent to
sending all data to the fusion center. A sequential procedure is
most parsimonious in terms of communication cost and especially
effective in large wireless sensor networks. We explore those con-
ditions for which little, or no loss in performance is encountered
with this sequential procedure. Specifically, we provide analytical
expressions for the maximum likelihood estimator under “geomet-
ric” dependent noise. We show, by means of analysis and simula-
tions, that the performance is only marginally degraded when the
noise is assumed to be independent.

1. INTRODUCTION

The emergence of wireless sensor networks (WSNs) has created a
resurgence in the fields of distributed detection and estimation (see
e.g. [1], [2] and references therein). In the canonical WSN applica-
tion, densely deployed sensors with limited range, resolution and
power are expected to either detect a common occurrence or es-
timate parameters of interest. The sensors are able to collaborate
amongst themselves or with the fusion center. The main objective
is to accurately detect or estimate the state of nature while mini-
mizing the energy resource expenditure.

While numerous works on distributed detection in WSNs ex-
ist, the literature on distributed estimation in WSNs is not as preva-
lent. In the present setting of the distributed estimation problem,
each sensor collects observations based on a parameter of inter-
est. Either the observations or sufficient statistics, if available, are
shared amongst the sensors or passed to the fusion center. To fur-
ther reduce the energy cost for communication, the observations
may be quantized before transmission. Ultimately, the estimate
of the parameter is obtained by optimizing a non-linear function
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based on the received observations (e.g., maximum likelihood or
minimum mean-square error).

Deriving the maximum likelihood estimator (MLE) in a WSN
setting has been studied under various contexts. The simplest ap-
proach is to send the full set of unprocessed observations to the
fusion center where the clairvoyant MLE can be computed. This
approach is not feasible for WSNs due to the high communication
cost, but provides a benchmark for accuracy performance. Another
approach is to develop procedures that take into account the power
and bandwidth constraints. In [3,4], the focus is on finding a class
of MLEs that attain a variance that is close to the clairvoyant es-
timator when the observations are quantized to one bit. In [5], an
iterative information sharing procedure based on the Fisher scoring
method is explored. Both approaches lead to significant reduction
in terms of energy expenditure and incur little or no loss of infor-
mation.

While most of the results on distributed estimation assume
that the sensor observations are conditionally independent, less is
known about the broader, more difficult problem in which the sen-
sor observations are conditionally dependent. In many practical
applications, a large number of sensors are deployed over a finite
region. Hence, some spatial correlation most likely exists among
the sensor observations due to the dependent noise. The issue of
distributed estimation in dependent noise was studied in [6], where
the authors implemented suboptimal estimates to show that their
scheme outperforms procedures which neglect dependency.

In this paper, we consider a deterministic mean location pa-
rameter estimation problem and we study the effect of dependent
noise in the estimation-accuracy tradeoff. In the presence of inde-
pendent Gaussian noise, deriving the MLE is straightforward and
highly energy efficient. The full observation set from all the sen-
sors does not need to be present at the fusion center when the pa-
rameter estimate is calculated. Instead, only specific quality mea-
sures based on local sensor observations are necessary. Hence,
if all the sensors only send quality measures to the fusion center,
O(N) bit-meters of transport energy cost is required, where N is
the number of sensors. Furthermore, the specific quality measures
from each sensor can be passed sequentially from sensor to sensor.
Given the individual sensor quality measures, a cumulative sum
can be computed where each sensors adds its own local contribu-
tion to the previous cumulative sum. This sequential procedure
requires O(

√
N) bit-meters of transport energy cost. Refer to [7]

for details.
On the other hand, deriving the MLE for the dependent obser-

vation case is not analytically feasible. In addition, the MLE under
dependent noise requires all the data observations to be present
at the fusion center, hence costing O(NM) bit-meters in terms
of transport cost, where M is the number of local sensor obser-
vations. To address these issues, we explore a particular model
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where the covariance matrix has special structure. This allows the
clairvoyant MLE and the corresponding Cramer-Rao lower bound
(CRLB) to have explicit analytic forms. Then a comparison is
made between the variance of MLE under dependent noise with
the variance of the MLE assuming independent noise to see the
improvement in accuracy by incorporating dependency in the es-
timate. We show that the MLE assuming independent noise is
asymptotically equivalent to the MLE assuming dependent noise.
Hence, assuming independence drastically reduces the communi-
cation cost while only marginally reducing the accuracy perfor-
mance.

The organization of this paper is as follows. Section 2 has the
problem formulation with analytical results for several different
sensor network architectures. Section 3 provides the simulation
results and conclusion.

2. PROBLEM FORMULATION

Parameter Description

M # of measurements per sensor
N # of sensors
i measurement index: i = 1, . . . , M
j sensor index : j = 1, . . . , N
θ scalar parameter of interest

xi,j ith observation from jth sensor
xi ith observation vector from all the sensors

Consider a wireless sensor network (WSN) comprised of N
sensors where each sensor collects M measurements. While we
assume that the sensor observations are independent from mea-
surement to measurement, they are not necessarily independent
from sensor to sensor. Hence, the observations at time index i of
N sensors are modeled as

xi = θ1 + wi (1)

where

f(wi|Σ) =
1

(2π)
N
2 |Σ| 12

exp (−1

2
wT

i Σ−1wi) . (2)

We will let f(wi|Σ) denote the noise probability density function
(Gaussian) with covariance matrix Σ. We assume θ is fixed but
unknown.

If all the observations from the WSN, {xi}M
i=1, are available,

the MLE of θ is given by

θ̂MLE =
1

1T Σ−11

1

M

M∑
i=1

1T Σ−1xi . (3)

The variance of the estimator in Eq. (3) is

Var (θ̂MLE) =
1

M (1T Σ−11)
, (4)

and the Fisher information is

I (θ̂MLE) = M
(
1T Σ−11

)
. (5)

Hence, the Cramer-Rao lower bound (CRLB) is achieved by the
estimator.

The estimator in Eq. (3) represents the most general form of
the MLE of θ. Depending on the structure of the covariance ma-
trix, Σ, simplifications can be made on the form of the MLE. The

simplest case is when the spatial independence is imposed on the
sensor observations. If the noise is independent from sensor to
sensor and σ2

j = σ2 for all j, then Σ = σ2I. The MLE of θ is
given by

θ̂SAE =
1

MN

M∑
i=1

N∑
j=1

xi,j . (6)

We will refer to the estimator found in Eq. (6) as the sample aver-
age estimator (SAE).

By observing the structure of the SAE in Eq. (6), it is evident
that a sequential procedure can be implemented where each sen-
sor only passes certain statistics of their own data from sensor to
sensor. As the statistics traverse throughout the WSN, each sensor
updates the current statistic values based on their own observation
data. For the independent Gaussian noise case with the covariance
matrix Σ = σ2I, the sequential procedure only requires the sam-
ple average, µ̂j , to be computed and passed from sensor to sensor,
where µ̂j = 1

M

∑M
i=1 xi,j .

This example is the motivation behind our sequential proce-
dure. Without any loss of accuracy in the MLE estimate of θ, we
save energy by implementing a sequential procedure over a cen-
tralized procedure. Now, we adopt a similar approach for a partic-
ular class of dependent noise.

2.1. Dependent Noise, Fixed Spacing

Assume that the sensor nodes are equally spaced apart and each in-
dividual sensor has the same variance. As more sensors are added,
the space the sensors cover grows accordingly. The elements of the
covariance matrix have a geometric form: Σi,j = σ2ρ|i−j|. Then,
for the 1-dimensional sensor array, the covariance matrix will be:

Σ = σ2

⎡⎢⎢⎢⎢⎢⎣
1 ρ ρ2 . . . ρN−1

ρ 1 ρ . . . ρN−2

ρ2 ρ 1 . . . ρN−3

...
...

...
. . .

...
ρN−1 ρN−2 ρN−3 . . . 1

⎤⎥⎥⎥⎥⎥⎦ . (7)

The matrix in Eq. (7) is referred to as the Kac-Murdock-Szegö
matrix [8, 9] which has a simple tridiagonal inverse

Σ−1 =
1

σ2(1 − ρ2)

⎡⎢⎢⎢⎢⎢⎣
1 −ρ 0 . . . 0
−ρ 1 + ρ2 −ρ . . . 0

. . .
. . .

. . .
0 . . . −ρ 1 + ρ2 −ρ
0 . . . 0 −ρ 1

⎤⎥⎥⎥⎥⎥⎦ ,

when N ≥ 3. The MLE of θ is given by

θ̂MLE =
1

M(N(1 − ρ) + 2ρ)

×
[

M∑
i=1

N∑
j=1

xi,j − ρ

M∑
i=1

N−1∑
j=2

xi,j

]
.

(8)

The corresponding variance of the estimator is

Var(θ̂MLE) =
σ2(1 + ρ)

M
(
N(1 − ρ) + 2ρ

) . (9)

To implement the MLE, all the observations must be sent to
the fusion center. A distributed technique is not apparent since cor-
relation exists amongst the observations. Thus, the energy expen-
diture in terms of transport cost is O(MN) bit-meters. However,
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if we only calculate the sample average, a sequential procedure can
be used that only costs 0(

√
N) bit-meters. So the following ques-

tions arise. Is it worth all this extra energy cost to achieve the best
MLE? What is the accuracy performance gain in terms of the vari-
ance of both estimators under dependent noise? To answer these
questions, the variance of the SAE needs to be calculated under
the noise conditions where Σ is Eq. (7). The difference between
the variance of the MLE and the variance of the SAE provides a
measure for the accuracy improvement.

Under the same noise conditions, the variance of the estimator
in (6) is found to be

Var (θ̂SAE) =
σ2

NM
+

2σ2ρ

N2M(1 − ρ)

×
[
(N − 1) − ρ

1 − ρ

(
1 − ρN−1)] .

(10)

A straightforward computation shows the following proposition.

Proposition 1 For the covariance matrix given by Eq. (7), if N ≥
3 and ρ ∈ (0, 1), we have

Var (θ̂SAE) − Var (θ̂MLE)

Var (θ̂MLE)
= O(N−1) . (11)

Thus, θ̂SAE is asymptotically optimal. For example, when

ρ = 0.1, M = 10, σ2 = 10, N = 10, Var (θ̂SAE)−Var (θ̂MLE)

Var (θ̂MLE)
=

0.16%. However, when N = 20, Var (θ̂SAE)−Var (θ̂MLE)

Var (θ̂MLE)
= 0.090%.

Hence, even for small values of N , the performance of θ̂SAE is not
much worse than that of θ̂MLE .

2.2. Dependent Noise, Proximity Spacing

A different model is considered when the space the sensors cover
is fixed. As more sensors are added, the sensors get closer and
thus, more correlated. If we add sensors, equally spaced, on a unit
straight line, the maximum distance between adjacent sensors is
d = 1

N−1
. Then the elements of the covariance matrix Ai,j =

σ2ρ|i−j|d.

Σ = σ2

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1 ρ
1

N−1 ρ
2

N−1 . . . ρ

ρ
1

N−1 1 ρ
1

N−1 . . . ρ
N−2
N−1

ρ
2

N−1 ρ
1

N−1 1 . . . ρ
N−3
N−1

...
...

...
. . .

...

ρ ρ
N−2
N−1 ρ

N−3
N−1 . . . 1

⎤⎥⎥⎥⎥⎥⎥⎥⎦
. (12)

The MLE for the covariance matrix in (12) is

θ̂MLE =
1

N(1 − ρ
1

N−1 ) + 2ρ
1

N−1

[
N∑

j=1

µ̂j − ρ
1

N−1

N−1∑
j=2

µ̂j

]
(13)

with

Var (θ̂MLE) =
σ2(1 + ρ

1
N−1 )

M
(
N(1 − ρ

1
N−1 ) + 2ρ

1
N−1

) . (14)

Note, as N → ∞, the variance of the MLE approaches 2σ2

M
(
2−log ρ

) .

However, the variance of the SAE under the same covariance
matrix is

Var (θ̂SAE) =
σ2

NM
+

2σ2ρ
1

N−1

N2M(1 − ρ
1

N−1 )

×
[
(N − 1) − ρ

1
N−1

1 − ρ
1

N−1

(
1 − ρ

)]
.

(15)

Given the analytical expressions for the variance of both esti-
mators, we have the following propositions.

Proposition 2 For the covariance matrix given by Eq. (12), if
N ≥ 3 and ρ ∈ (0, 1), we have

sup
N

[
Var (θ̂SAE) − Var (θ̂MLE)

]
=

− 2σ2

M

[
1

log ρ
+

1 − ρ(
log ρ

)2 +
1

2 − log ρ

]
,

(16)

and

sup
N,ρ

[
Var (θ̂SAE) − Var (θ̂MLE)

]
≤ 0.072

σ2

M
. (17)

Proposition 3 For the covariance matrix given by Eq. (12), if
N ≥ 3 and ρ ∈ (0, 1), we have

sup
N

[
Var (θ̂SAE) − Var (θ̂MLE)

Var (θ̂MLE)

]
=(

1 − 2

log ρ

) (
1 +

1 − ρ

log ρ

)
− 1 ,

(18)

and

sup
N,ρ

[
Var (θ̂SAE) − Var (θ̂MLE)

Var (θ̂MLE)

]
≤ 0.14 . (19)

Propositions 2 and 3 claim that for any N , the absolute and
relative performance losses compared to the performance of the
MLE are bounded by a function of ρ, as seen by the right hand
side of Eqs. (16) and (18), respectively. Also, for all N and ρ,
the bound on absolute performance loss is found to be 7.2%× σ2

M
,

while the bound on the relative performance loss is found to be
14%.

3. SIMULATION RESULTS AND CONCLUSION

We simulated a WSN under geometric dependent noise where each
sensor takes 10 measurements and has the same variance, σ2

j =
10. All the figures represent the relationship between the variance
of both estimators and ρ for various N . In Figs. (1) and (2), the
distance between the sensors are fixed. However, in Fig. (1), the
sensors are placed on a line, while in Fig. (2), a more realistic
scenario is encountered where the sensors are placed on a square
grid. As stated in Prop. 1 and evident from the graph in Fig.
(1), as the number of sensors, N , increases, the gap between the
variance of both estimators decreases. Also, for any fixed N , the
gap between variance of both estimators is relatively small. For the
case where the sensors are placed on a square grid, an analytical
closed form expression has yet to be found. Unlike Fig. (1), in
Fig. (2), as N increases, the gap between the variance of the two
estimators does not seem to shrink. However, the difference in
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Fig. 1. Plot of variance versus ρ for the MLE and the SAE for the
cases where N = 5, 10, 50. The entries of the covariance matrix
are given by Σi,j = σ2ρ|i−j|, (M = 10, σ2 = 10).

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

ρ

V
ar

ia
nc

e

Variance of θ
SAE

Variance of θ
MLE

N = 9

N = 25

N = 100

Fig. 2. Plot of the variance versus ρ for the MLE and the SAE
for the cases where N = 9, 25, 100. The entries of the covariance
matrix are given by Σi,j = σ2ρ|i−j|, (M = 10, σ2 = 10).

the performance is not too large. As for Fig. (3), the sensors are
placed on a line, but the distance between the sensors gets closer as
more sensors are added. When N increases, the gap between the
variances of both estimators also increases. This relationship holds
since as N increases, the sensor observations get more correlated.
Hence, the independent assumption is less valid. For the MLE,
when N > 5, the variance curves are indistinguishable. Also,
evident from the graph, both Props. 2 and 3 hold.

For the covariance matrices studied in this paper, there does
not appear to be much degradation if you assume that the noise is
independent and use the SAE. More precisely, we showed that if
the dependent noise structure has the form in Eq. (7), the SAE is
asymptotically equivalent to the MLE. Also, if the noise covari-
ance has the form in Eq. (12), we found numerical and analytical
bounds on the performance loss. While we incur a small loss in
performance by using the SAE instead of the optimal MLE, there
are considerable energy savings due to the sequential nature of cal-
culating the SAE.
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Fig. 3. Plot of the variance versus ρ for the MLE and the SAE for
the cases where N = 5,∞. The entries of the covariance matrix

are given by Σi,j = σ2ρ
|i−j|
N−1 , (M = 10, σ2 = 10).
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