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ABSTRACT

Inter-sensor communication often comprises a significant
portion of energy expenditures in a sensor network as
compared to sensing and computation. We discuss an
integrated approach to dynamically routing measurements
and models in a sensor network. Specifically, we examine
the problem of tracking objects within a region wherein
the responsibility for combining measurements and
updating a posterior state distribution is assigned to a
single sensor at any given time step. The so called leader
node may change over time. Sensor nodes communicate
for two reasons: firstly, measurements of target state are
transmitted from sensors to the current leader node for
incorporation into the state estimate model; secondly, the
state model is transmitted between sensors when the leader
node changes. The trade-off between these two types
of communication is of primary importance to dynamic
selection of the leader node. We propose an algorithm
based on a dynamic programming roll-out formulation of
the minimum cost problem. We obtain a cost function
which can be efficiently minimized by simplifying the
problem to that of an open loop feedback controller which
is an upper bound to the optimal cost. We present empirical
results which compare methods previously proposed in the
literature to the algorithm presented here.

1. INTRODUCTION

Energy is a limited resource in many sensor networks. It
is often the case that inter-sensor communication costs are
greater by orders of magnitude than local computation and
sensing costs with respect to energy expenditures [1, 2].
Motivated by the need for integrated strategies which trade
off energy conservation with sensing needs, we discuss two
approximate dynamic programming approaches for routing
measurements and state distributions in a distributed sensor
network. While the methodology is general, we focus on
object tracking for concreteness.

This work was supported in part by ODDR&E MURI through
ARO grant DAAD19-00-0466 and MIT Lincoln Laboratory through ACC
PO#3019934.

Quantities of interest (i.e., kinematic state) in object
tracking are inferred largely from sensor measurements
which are in proximity to the object (e.g., see [3]).
Consequently, a variety of approaches [4, 5] designate the
responsibility of integrating measurements to one sensor
node (i.e., the leader node) in the network. Over time the
leader node changes dynamically as a function of the
kinematic state of the object. Along with advantages comes
the additional complexity of transmitting the representation
of the state distribution from the current leader node to the
next. In this paper we examine the problem of determining
when a change in leader node is necessary in the context
of object tracking in distributed sensor networks. For
purposes of addressing the primary sensor resource
management issue, we restrict ourselves to tracking a
single object. While additional complexities certainly arise
in the multi-object case (e.g., data association) they do not
change the basic problem formulation or conclusions.

2. PROBLEM FORMULATION

The role of the leader node is to compute a representation
of the posterior distribution of the object’s kinematic state
conditioned on the received measurements. In the absence
of energy constraints, the optimal solution is to incorporate
the measurements of all sensors in the network. In the face
of energy constraints, optimal approaches generally incor-
porate a subset of sensor measurements into the state dis-
tribution. The problem of jointly maximizing information
gain and minimizing communication cost is a difficult op-
timization problem and is considered in [6, 7]. Here, we
address dynamic leader node assignment for a case when
multiple sensor measurements are used and the complexity
of the state distribution is assumed fixed at each time step.

2.1. Object dynamics and sensor models

While the optimization approach described in Section 3 is
generally applicable, we use specific object dynamics and
measurement models to clarify the discussion. Denoting the
object state at time k as xk, and the measurement taken
by sensor u ∈ {1 : Ns} (Ns is the number of sensors) at
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time k as z
u
k , the state dynamics and nonlinear measurement

models are described as:

xk+1 = Fxk + wk (1)

z
u
k = h(xk, u) + v

u
k (2)

h(xk, u) =
a

||Lxk − l
u||22 + b

(3)

where wk ∼ N{wk;0,Q} and v
u
k ∼ N{vu

k ;0,Ru}1 are
independent white Gaussian noise processes and F and Q

are known matrices. The state is comprised of position and
velocity in two dimensions (xk = [px vx py vy]T ). Ve-
locity is modelled as a random walk with constant diffusion
strength q (independently in each dimension), while posi-
tion is the integral of velocity. The corresponding discrete-
time model can be calculated using the methods detailed
in [8]. The matrix L extracts the position variables of the
state and l

u is the location of the uth sensor. The constants
a and b can be tuned to model the signal-to-noise ratio of
the sensor and the fall-off in the region close to the sen-
sor (allowing a saturation effect to be approximated). Due
to the nonlinearity in h(xk, u), measurements from sensors
in close proximity to the object are more informative than
those from distant sensors.

2.2. Communications

We assume that any sensor node can communicate with any
other sensor node in the network, and that the cost of these
communications is known at every sensor node (although
in practice this will only be required within a small region
around each node). We model the cost of direct commu-
nication between two nodes as proportional to the square
distance between the two sensors, C̃ij ∝ ||li − l

j ||22. Com-
munications between distant nodes can be performed more
efficiently using a multi-hop scheme, in which several sen-
sors relay the message from source to destination. Hence
we model the cost of communicating between nodes i and
j, Cij , as the length of the shortest path between i and j,
using the distances C̃ij as arc lengths:

Cij =
n∑

k=1

C̃ik−1ik
(4)

where {i0, . . . , in} is the shortest path from node i = i0 to
node j = in. We omit discussion of methods for determin-
ing shortest path distances (e.g., see [9]).

2.3. Sensor management

Selecting the subset of sensors which actively sense and
transmit their measurements to the leader node involves a

1We use the notation wk ∼ N{wk;0,Q} as short-hand for p(wk) =

N{wk;0,Q}, where N{x; µ,P} = |2πP|−
1
2 exp{−0.5(x −

µ)T P−1(x− µ)}.

fundamental trade-off between estimation performance,
and the energy consumed in achieving that performance.
Given the sensor measurement model of Section 2.1,
a natural heuristic is to set a threshold for transmitting
measurements, such that the measurement from sensor u is
transmitted if and only if zu

k ≥ η. We assume that the
threshold η is fixed to a value such that the probability that
a measurement from a sensor far from the object will
exceed η is small. Even with this assumption, the expected
cost of transmitting measurements from sensors far from
the object will be significant, since the cost of transmitting
a measurement increases with range, and the probability of
transmission is roughly fixed. To avoid unnecessary false
alarms and conserve energy, sensors are deactivated if
P (zu

k ≥ η) < ε. This simplified formulation yields an
optimization problem in which it is possible to consider
communication costs aggregated over multiple time steps,
as discussed in Section 3.

3. DYNAMIC LEADER NODE SELECTION

Using the scheme described in Section 2.3, we examine the
problem of which node should be selected as leader. This
process involves a trade-off between the cost of transmitting
measurements to the leader, and the cost of transmitting the
state distribution to a new leader node. We neglect the cost
of activating and deactivating sensors, as this transmission
contains only a single bit of information, and occurs infre-
quently (sensors are activated when the object enters their
vicinity, and deactivated when it leaves).

Combining the cost of Eq. (4), the probability of mea-
surement transmission from Section 2.3, and assuming con-
stant data per measurement, the expected cost for a single
sensor s to send its measurement to the leader node uk is
proportional to:

g̃s(Xk, uk) = Cuks E
xk|Z0:k−1

P s
d (xk) (5)

where Xk denotes conditional probabilistic model of object
state, p(xk|Z0:k−1) (Z0:k−1 denotes all measurements re-
ceived up to and including time (k−1)), which is a sufficient
statistic for the dynamic programming state [9], and P s

d (xk)
is the probably of detecting the object (i.e., that zs

k ≥ η) if
its true state is xk. Incorporating the effect of the sensor de-
activation, we obtain an expected communication cost for
sensor s of:

gs(Xk, uk) =

{
g̃s(Xk, uk), Exk|Z0:k−1

P s
d (xk) ≥ ε

0, Exk|Z0:k−1
P s

d (xk) < ε

(6)
Assuming that the probabilistic model of object state con-
sists of fixed amount of data, the cost of transmitting the
probabilistic model from the existing leader node u to a
new leader node ũ is R · Cuũ, where R is the ratio of the
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number of bits in the probabilistic model to the number of
bits in a measurement. We commence by defining the base
control policy [9] µ̃(Xl), which selects as leader node the
sensor which has the smallest expected square distance to
the object. The cost of employing this policy over M steps
starting from time step (k + N) can be calculated as:

J
µ̃
l (Xl, ul−1) =

Ns∑
s=1

gs(Xl, µ̃(Xl)) + R · Cul−1µ̃(Xl)

+ E
Zl|Z0:l−1

J
µ̃
l+1(Xl+1, µ̃(Xl)),

l ∈ {k + N : k + N + M − 1} (7)

where Zl denotes all sensor measurements received at time
l, and Xl+1 incorporates Xl and Zl through a Bayes up-
date operation. The recursion of Eq. (7) terminates with
J

µ̃
k+M+N (Xk+M+N , uk+M+N−1) = 0. Note that the only

dependence of J
µ̃
l (Xl, ul−1) on ul−1 is through the term R ·

Cul−1µ̃(Xl), hence we can define J̃l(Xl) = J
µ̃
l (Xl, ul−1) −

R ·Cul−1µ̃(Xl) which will have no dependence on ul−1. We
utilize this base policy to construct an N -step roll-out [9]
described at time k by the following recursive equation:

Jl(Xl, ul−1) = min
ul

{ Ns∑
s=1

gs(Xl, ul) + R · Cul−1ul

+ E
Zl|Z0:l−1

Jl+1(Xl+1, ul)

}
,

l ∈ {k : k + N − 1} (8)

The recursion of Eq. (8) terminates with

Jk+N (Xk+N , uk+N−1) = J
µ̃
k+N (Xk+N , uk+N−1)

= J̃k+N (Xk+N ) + R · Cuk+N−1µ̃(Xk+N ) (9)

Noting that the control choices uk:k+N−1 do not affect the
probabilistic state Xk+N = p(xk+N |Z0:k+N−1) (since
sensor management and state estimation are invariant to
the leader node selection), we can define Ĵl(Xl, ul−1)
using the same recursion as Eq. (8), terminating with
Ĵk+N (Xk+N , uk+N−1) = R · Cuk+N−1µ̃(Xk+N ), and we
will have

Ĵl(Xl, ul−1) = Jl(Xl, ul−1)+ E
Zl:k+N−1|Z0:l−1

J̃k+N (Xk+N )

(10)
and the choice of controls to produce the optimum will be
identical. Noting that this holds for any value of M (the
number of steps over which the expected cost of the base
heuristic is evaluated), we view the control policy associ-
ated with Ĵ as the N -step roll-out of the infinite horizon
base policy J µ̃.2 The dynamic programs described by J

2For this view to be rigorous, we must have J µ̃ finite for all states. If
the sensor field is finite, and we can guarantee that the object will leave the
coverage region after a certain number of steps, we can see that such an
assumption is reasonable.

and Ĵ possess a cost improvement property, i.e., the cost of
the control policy obtained using the roll-out policy is guar-
anteed to not exceed the cost of the base policy. Similarly,
the cost of the roll-out with more steps is guaranteed not to
exceed the cost of the roll-out with fewer steps.

The dynamic programs for J and Ĵ have an infinite
number of states, hence approximate methods must be used.
In order to enable evaluation over a large planning hori-
zon, we choose two common suboptimal approximations:
the Open Loop Feedback Controller (OLFC), and the Par-
tially Stochastic Certainty Equivalent Controller (PSCEC)
[9]. At each stage the OLFC calculates a control trajectory
(i.e., a plan which node will be leader at each step) for the
next N stages, neglecting the fact that the controller will
have opportunity to change its decisions in the interim, after
further measurements are received. The objective which is
minimized by the OLFC can be seen to be an upper bound
to the true dynamic program cost function: applying the
bound Ex mini f(x, i) ≤ mini Ex f(x, i), and neglecting
the impact of sensor deactivation, it can be shown (see [7]
for details) that an N -step rollout of Eq. (8) has the follow-
ing upper bound:

Ĵk(Xk, uk−1) � min
uk:k+N−1

{ k+N−1∑
l=k

{
R · Cul−1ul

+

Ns∑
s=1

Culs E
xl|Z0:k−1

P s
d (xl)

}

+ E
Zk:k+N−1|Z0:k−1

R · Cuk+N−1µ̃(Xk+N )

}
(11)

The upper bound is approximate since the impact of
sensor deactivation has been neglected; in practice
this will be performed approximately using the test
Exl|z0:k−1

P s
d (xl) � ε rather than Exl|z0:l−1

P s
d (xl) � ε

(i.e., neglecting the impact of measurements received
between time k and time (l − 1)). We approximate the
final expectation by Cuk+N−1µ̃(X̄k+N ), where X̄k+N

= p(xk+N |Z0:k−1). The expression in Eq. (11) can be
solved easily as a finite state deterministic dynamic
program, where the state is the leader node at the previous
stage.

Using the alternative approximation of the PSCEC algo-
rithm, we design the control law assuming that the state (i.e.,
object location) is known exactly at each time step, and then
implement the control law using the mean or maximum like-
lihood estimate of the state. Using a particle approximation
for the PDF of object state, one can view the problem struc-
ture as a finite state stochastic dynamic program, where the
state at time k is the combination of the location of the ob-
ject at time k (discretized to Np values hypothesized by the
particle filter approximation), and the leader node at time
(k − 1). To determine the possible locations of the object,
the particle filter representation is propagated through the
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Fig. 1. Comparison of total communication cost. Each point rep-
resents a single Monte Carlo simulation; the x-axis value shows
communication cost for the reference algorithm (MESD in (a) and
(b), and MMI in (c) and (d)), while the y-axis value shows the
communication cost of the test algorithm, as listed in the legend.

simulation model of the system dynamics. Transition prob-
abilities describing the distribution of object state at time
(l + 1) conditioned on the state at time l can be derived
using importance sampling ideas such as [10].

4. SIMULATION RESULTS

The model presented in Section 2.1 was simulated for 100
Monte Carlo trials using 20 sensors positioned randomly
under a uniform distribution inside a 100×100 region. Each
trial used a different sensor layout. The initial position of
the object is in one corner of the region, and the velocity is
2 units/sec in each dimension, moving into the region. The
simulation ends when the object leaves the 100×100 region
or after 200 time steps. The sample time was 0.25 sec, the
measurement model parameters were a = 2000, b = 100
and r = 1, and the ratio of the model transmission cost to
the measurement transmission cost was R = 64.

The performance measure was the total communication
energy expended up until 60 simulation steps before the
end of the simulation, chosen to avoid edge effects
associated with the object leaving the region populated
with sensors. Performance was compared against two
heuristic methods: firstly, a method which selects as leader
node the sensor with the Minimum Expected Square
Distance (MESD) from the object, and secondly, a method
which selects as leader node the sensor with the Maximum
Mutual Information (MMI) between its measurement and
the object state conditioned on previous measurements.

The results shown in Fig. 1 and Table 1 compare the
communication cost expended by the various algorithms.
The data demonstrates that the dynamic programming

Lookahead 1 3 5 10 20 40 Heuristics
OLFC 1.68 1.67 1.70 1.65 1.54 1.51 MESD 2.70
PSCEC 1.85 1.83 1.75 1.67 1.65 1.64 MMI 4.44

Table 1. Average communication cost (×10
5).

methods are able to provide a moderate reduction in
communication cost over the simple minimum expected
square distance heuristic, and a more substantial
improvement over the maximum mutual information
method. The major benefit of the dynamic programming
methods was obtained with a lookahead of a single time
step; longer lookahead values yielded small improvements.
Experiments were performed with different values of R,
and the same basic structure remained.

5. CONCLUSION AND FUTURE WORK

The analysis in Section 3 demonstrates that dynamic pro-
gramming provides a principled approach to the problem of
leader node selection in an energy-constrained sensor net-
work. The simulation results in Section 4 demonstrate that
tractable approximations of dynamic programming are able
to substantially reduce the communications cost incurred in
tracking a object as it passes through a field of sensors.
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