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ABSTRACT

We present a new approach to localizing an isotropic energy source
using measurements from distributed sensors based on kernel av-
eraging techniques. The location estimate is easily and efficiently
calculated in a decentralized fashion. Statistical properties are de-
rived for a very general measurement model. Experiments suggest
that the proposed estimator is much more robust and exhibits better
performance characteristics than the popular least squares estima-
tor under a variety of conditions.

1. LOCALIZATION VIA AVERAGING

The problem of localizing and tracking an energy-emitting source
encompasses many of the challenging issues which commonly
arise in wireless sensor network applications [1]. Consequently,
this problem has recently received a great deal of attention. In
[2], Chen et al. present an approach to source localization using
direction of arrival (DOA) measurements, with a lot of practical
insight. Sheng and Hu consider the localization problem using
received signal strength (RSS) measurements corrupted with zero
mean Gaussian noise in [3]. The maximum likelihood estimate
in this context amounts to solving a nonlinear least squares opti-
mization problem. They formulate a variety of approaches to solv-
ing this problem, most of which are not easily implemented in a
decentralized fashion and are too computationally complex even
for centralized computation with measurements from more than a
handful of nodes. In our previous work, [4], we propose and an-
alyze an energy-efficient decentralized method for approximating
the nonlinear least squares solution. Wang et al. have compared
bounds on the best localization performance achievable using time
of arrival (TOA), RSS, and DOA measurements under a Gaussian
noise model [5]. Their results indicate that TOA and RSS measure-
ments offer comparable performance, both of which are superior
to that achievable using DOA measurements.

This paper introduces a new approach to localizing an
isotropic energy source using measurements from distributed sen-
sors. Our aim is to design a practical algorithm which is imple-
mentable in a decentralized fashion and which is robust to un-
known source and propagation parameters, as well as noise. Let
θ denote the unknown source location, and let xj , j = 1, . . . , n
denote the known locations of n sensor nodes. Throughout this
paper we focus on the case where θ and xj are two dimensional
but our results carry over to the three dimensional case. We as-
sume that sensors are deployed uniformly at random over the unit
square. Each sensor takes measurements according to the model

yj = αρ(‖xj − θ‖) + wj , (1)

where α > 0 is a signal strength, ρ : R
+ → R

+ is a monotone de-
creasing function, and wj are statistically independent, bounded,
non-negative random variables with distribution p(w). Through-
out this paper ‖·‖ denotes Euclidean distance. Although this model
is very general in that it encompasses both RSS and TOA, our main
focus is on RSS measurements where the decay function has the
usual form

ρ(‖xj − θ‖) =
1

‖xj − θ‖β
, (2)

and typical values of β are between 2 and 4. See [6] for a discus-
sion of the merits of both types of measurements in localization
problems. This model is physically motivated by the common per-
ception of sensor network nodes as being cheap, wireless devices
that probably implement a very simple procedure for collecting
measurements. In particular, we envision RSS sensors composed
of a square-law concatenated with an integrator. Thus, all mea-
surements will be nonnegative. Furthermore, the range of mea-
surements is bounded due to basic physical considerations.

To avoid boundary effects near the edge of the sensor field
(i.e., unit square), throughout this paper we assume that the source
is located well within the interior of the region being sensed. There
are a number of ways of formalizing this notion which will arise
in what follows. See [5] for a discussion of the coverage areas for
different sensing modalities.

Our approach to source localization is based on kernel averag-
ing estimators which are simply illustrated as follows. Consider,
for the time being, an idealized situation where there is no noise
and each sensor is able to determine whether it is within a distance
of γ from the source. The network then estimates the source lo-
cation by averaging the locations of those sensors that are “close
enough” to the source. Using the indicator function 1{·}, we can
write this estimator as

θ̂1 =

∑n
j=1 xj1{‖xj−θ‖≤γ}∑n

j=1 1{‖xj−θ‖≤γ}
. (3)

It is easy to show that such an estimator is unbiased and consistent,
but there are many issues which need to be addressed to go from
this simple concept to a practical estimation scheme. Sensors do
not directly know their distance from the source. Rather, the mea-
surements are generally some complicated nonlinear function of
the sensor’s distance to the source. For example, if the measure-
ments obey (2) then ‖xj−θ‖ ≈ (α/yj)

1/β . The parameters α and
β are typically not known exactly. Additionally, it is reasonable to
suppose that sensors located closer to the source have more reliable
measurements than those who are far away from the source [7, 8].
We would probably like to modify the estimator (3) to account for
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this by giving sensors that are further from the source less influ-
ence on the estimate. Accordingly, we propose estimators of the
general form

θ̂ =

∑n
j=1 xjg(yj)∑n

j=1 g(yj)
, (4)

where g : R
+ → R

+ is a monotone increasing function with
g(0) = 0 and limy→∞ g(y) < ∞. Thus, we have g filling two
roles. First it is “inverting” the decay function ρ in a very loose
sense to recover the distance from each sensor to the source. Si-
multaneously, g dictates how greatly a contribution different sen-
sors make in the computation of (4) based on their received signal
strength (estimated distance from the source).

2. DECENTRALIZED ALGORITHMS FOR
COMPUTATION

Regarding the decentralized computation of such an estimator, first
observe that θ̂ can be written as the quotient of two averages:
1
n

∑n
j=1 xjg(yj) and 1

n

∑n
j=1 g(yj). The problem of computing

averages in a decentralized manner has been studied in a number
of contexts and is an instance of the so-called Consensus Prob-
lem. A number of algorithms have been proposed including those
discussed in [9, 10, 11, 12]. All of these algorithms only involve
communications between neighboring nodes in the sensor network
communication graph. That is, information is only exchanged be-
tween nodes that communicate directly.

One class of algorithms for computing averages falls under the
general heading of local broadcast algorithms, so named because
at each iteration each node broadcasts its local value to each of its
immediate neighbors. After learning the values of its neighbors,
each node updates its local value according to a weighted aver-
age of the neighbors’ values and its previous local value. Then
the nodes broadcast the updated values and repeat. The evolu-
tion of local estimated values can be modelled as a Markov Chain,
where the weights used by each node in computing the weighted
average update at each iteration correspond to the columns of the
probability transition matrix. It is easy to verify that when the cor-
responding stationary distribution is uniform over all nodes in the
network then the values at each iteration converge to the average
of the initial values at each node.

So-called token passing algorithms offer an alternative ap-
proach to computing averages in a decentralized fashion. In this
approach, the node in possession of the token at each iteration
broadcasts its current value to all neighboring nodes who then
update their local values accordingly. The token takes a random
walk through the network corresponding to a random walk on a
graph which also corresponds to a Markov chain. As with the lo-
cal broadcast approach, if the stationary distribution of the Markov
chain is uniform over all nodes then the value computed at each
node converges to the average almost surely.

There are a number of heuristics for determining appropriate
weights or transition probabilities for both of these approaches
which only require each node in the network to know informa-
tion about the connectivity of its neighbors, including the popular
Metropolis-Hastings method. Thus, these algorithms show great
promise for robust computation in completely decentralized net-
worked systems. Both approaches are robust in the sense that even-
tually all sensors know the average and thus the estimated value.

If one node (or a subset of nodes) are compromised then the esti-
mated source location is not lost.

A local broadcast algorithm usually converges much faster
than token passing algorithms because more information is ex-
changed at each iteration, however the local broadcast algorithm
requires more communication at each iteration and thus may be
less desirable from the perspective of energy expended. Determin-
ing the optimal approach (e.g., in terms of latency, accuracy, or
energy) is an interesting and relevant question to the sensor net-
work community. This issue is not addressed within this paper
due to space limitations, however it is the subject of our ongoing
research. We merely wish to point out at this time that there are
many efficient decentralized schemes for computing averages in
networked systems.

In the following sections we analyze some asymptotic statis-
tical properties of the kernel estimator. Experiments reveal that
our proposed averaging estimator performs better than the popu-
lar maximum likelihood or least squares estimator in a number of
scenarios and is much more robust to modelling errors.

3. BASIC PROPERTIES

3.1. The Case of No Noise

The following theorem characterizes the performance of the ker-
nel averaging estimator when there is no noise. The only source
of variability in this case is the randomness in the sensor loca-
tions. We define the variance of an unbiased position estima-
tor to be Var(θ̂) = E[(θ̂(1) − θ(1))2] + E[(θ̂(2) − θ(2))2], the
trace of the covariance matrix of θ̂. As stated before, we as-
sume that g : R

+ → R
+ is a monotone increasing function

with limy→∞ g(y) < ∞. Moreover, we assume that the support
of g to be over the interval [ymin,∞] for some a > 0 and that∫ ∞
0

rg(αρ(r))dr = 1/(2π). Thus, for a sensor to contribute to
the computation (4) it must measure a value y > ymin, or, equiv-
alently, it must be within a distance of R of the source location
where R = ρ−1(ymin/α). Additionally we assume that the true
source location is far enough away from the field border so that
nodes at the edge of the field only ever measure noise. These as-
sumptions ensure that there are no boundary artifacts.

Theorem 1 The estimator θ̂ given by (4) is unbiased. Further-
more, the asymptotic variance constant for this estimator is given
by

lim
n→∞

nVar(θ̂) = 2π

∫ R

0

r3g2(αρ(r))dr.

Remark: The asymptotic variance constant provides a very use-
ful characterization of estimator performance. For example, we
can use asymptotic variance constants to compare various estima-
tors or, if knowledge of the source and propagation characteristics
are known, then we can design kernels which minimize the asymp-
totic variance constant.

Sketch of proof: We first verify that the estimator is unbiased.
Because g only has support on the interval [ymin,∞], only those
sensors that are within R of the true source location contribute
non-zero values g(yj). Moreover, because the true source location
is sufficiently away from the boundary of the sensed region there is
a circle of radius R centered at the true source location which lies
completely within the unit square. It follows that the conditional
distribution of nodes within this circle is uniform since the entire
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circle is within the unit square. Thus, by conditioning on the set
Y = {yj , j = 1, . . . , n}, one establishes that E[θ̂] = θ.

Observe that the averaging estimator automatically adapts
to the signal strength parameter. One can show that as n →
∞, under the conditions on g listed in the previous section,
1
n

∑n
j=1 xjg(yj) → θα2 and 1

n

∑n
j=1 g(yj) → α2. Thus, one

can disregard α when designing the function g, or, in other words,
the kernel averaging estimator is invariant to α.

The variance calculation is the sum of two components of the
form

E

[(∑n
j=1(xj(i) − θ(i))g(yj)∑n

j=1 g(yj)

)2]
,

for i = 1, 2. Note that, for j �= k we have

E[
(
xj(i) − θ(i)

)(
xk(i) − θ(i)

)|yj , yk] = 0.

Thus, by conditioning on Y again, the cross terms in (5) cancel
and we can write

Var(θ̂) = E

⎡
⎢⎣

∑n
j=1 ‖xj − θ‖2g2(yj)(∑n

j=1 g(yj)
)2

⎤
⎥⎦

=
1

n
E

⎡
⎢⎣ 1

n

∑n
j=1 ‖xj − θ‖2g2(yj)(
1
n

∑n
j=1 g(yj)

)2

⎤
⎥⎦ .

Both the numerator and denominator of the term inside the expec-
tation form a sequence of bounded random variables which con-
verge almost surely and thus the expectations will converge. Thus,

lim
n→∞

nVar(θ̂) =
E[‖x − θ‖2g2(αρ(‖x − θ‖))]

(E[g(αρ(‖x − θ‖))])2

=
2π

∫ αρ(R)

0
r3g2(αρ(r))dr(

2π
∫ αρ(R)

0
rg(αρ(r))dr

)2 .

Further algebraic manipulations yield the desired result.

3.2. The Case with Noise

In the more general case where the measurements are corrupted
with noise. Under a variety of assumptions that allow us to avoid
bias due to “edge effects” (e.g., assuming that the noise is bounded
and placing further restrictions on θ, or simply considering the
case where θ is at the origin for asymptotic purposes), by the same
arguments given in the previous section the estimator θ̂ is unbiased
and the asymptotic variance constant is given by

lim
n→∞

nVar(θ̂)

=
E[‖x − θ‖2g2(yj)]

(E[g(yj)])2

=
2π

∫ ∞
0

∫ ∞
0

r3g2(αρ(r) + w)p(w)dwdr(
2π

∫ ∞
0

∫ ∞
0

rg(αρ(r) + w)p(w)dwdr
)2 ,

where p(w) is the noise distribution.

4. LEAST SQUARES ESTIMATION

For the sake of comparison, we briefly discuss statistical properties
of the least squares (LS) estimate which corresponds to the maxi-
mum likelihood estimate under a Gaussian noise model. Suppose
our observation model is as in (1) and let w̄ denote the mean of
the noise variables wj . Assuming that α, β, and w̄ are known, the
least squares estimator is defined as

t̂LS = arg min
t

1

2

n∑
j=1

(
α

‖xj − t‖β
+ w̄ − yj

)2

. (5)

The LS estimate is generally held as the “gold standard” for
unbiased parametric estimators. It can be viewed as a parametric
estimator for θ which minimizes the mean squared error between
the observed measurement values and the values predicted by the
model, and it can be effective when the model is accurate. How-
ever, a Gaussian noise model is often adopted despite whether it
may or may not be the most accurate noise model. Because of this
and because it has the appealing interpretation as finding the best
match to a model the LS estimator is commonly adopted.

A major drawback of LS estimators in general is that they are
highly sensitive to mismodelling. The solution to the minimiza-
tion problem (5) is a nonlinear function of the yj and if the model
parameters are not known precisely then the LS estimate will be-
come biased and generally exhibits poor performance. In contrast,
the proposed kernel method is essentially linear (linear plus a sim-
ple normalization). Consequently, the kernel averaging estimator
is also very robust to quantization errors. The LS estimator, on the
other hand, is much more sensitive to quantization, and the effects
of quantization are much more complicated to analyze [10]. In the
following sections we illustrate via experiments that the proposed
kernel averaging estimator is much more robust to modelling er-
rors. Additionally, our analysis of the asymptotic variance con-
stants of these estimators (not presented in this paper due to space
limitations) indicates that the kernel averaging estimator outper-
forms the LS estimator in many reasonable scenarios.

As a result its complicated nature, decentralized computation
of the LS estimator is much more problematic than that of our
proposed kernel approach. In [4] we introduced a decentralized
scheme for computing (5). Unlike the distributed algorithms dis-
cussed in Section 2, this scheme requires the actual estimate to be
passed through the network from node to node as opposed to the
exchange of local values. Such an approach to decentralized com-
putation may easily be compromised if communication between
nodes in the network is unreliable. If the actual estimate is lost
or corrupted during transmission then, essentially, the computa-
tion must be restarted from scratch. In comparison, because the
distributed averaging schemes discussed in Section 2 only involve
passing of local information (with the actual estimate computed
independently at each node), if one transmission is corrupted or
if a node goes down the overall network-wide computation is not
affected. Moreover, the LS estimate is actually much more com-
plicated to compute in general (even in a centralized scenario!)
because the problem (5) is in general a highly nonconvex optimiza-
tion problem with many local minima. Thus the kernel averaging
estimator is attractive from a number of perspectives.

5. SIMULATION RESULTS

In this section we compare the performance of the kernel averag-
ing estimator with the least squares estimator via simulated ex-
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true u = 10 u = 50 u = 100
β AV LS AV LS AV LS

1.75 0.023105 0.032908 0.029043 0.184190 0.032153 0.246440
2.0 0.018584 0.012366 0.025847 0.095909 0.028160 0.153190
2.25 0.019456 0.021119 0.025604 0.049594 0.026357 0.119890
3.0 0.021134 0.038980 0.023623 0.058753 0.021154 0.064065

Table 1. Average MSE for the Kernel Averaging (AV) and Least Squares Estimators over a network of 100 nodes. Each value is the average
performance over 100 trials.

periments. Nodes are deployed uniformly at random over the
unit square and a source is located at random within the region
[0.4, 0.6] × [0.4, 0.6]. The nodes make measurements according
to (1) with ρ as in (2). The noise variables wj are distributed uni-
formly over the interval [0, u], where u is varied in our experi-
ments. This noise model could represent uncertainty in the mea-
surements, in propagation of the energy signal, in the system hard-
ware, and in a number of other facets of the problem. In all of our
simulations we use α = 1. The LS estimator is given the correct
value of α and is designed assuming β = 2. The kernel g for the
averaging estimator is optimized (with respect to the asymptotic
variance constant) for the case where β = 2. Recall that the ker-
nel averaging estimator automatically adapts to the signal strength
(i.e., it is invariant to α), thus it does not need to be given the true
value.

We compare the performance and robustness of both estima-
tors to modelling errors and varying noise levels. Table 1 shows
the average mean squared error under a number of different set-
tings for u and β, for simulated networks of 100 nodes. Each
value in the table corresponds to the mean squared error for both
estimators, averaged over 100 trials. Clearly, the kernel averaging
estimator performs as well, and often much better in nearly every
situation. Observe that the second row, where β = 2 corresponds
to the case where there is no mismodelling and in this case the LS
estimator outperforms the kernel averaging estimator at 2 out of 3
noise levels. Additionally, note that the kernel averaging estimator
exhibits a graceful degradation behavior across the board whereas
the performance of the LS estimator decays much at higher noise
levels or modelling errors.

6. DISCUSSION

The experimental results of the previous section illustrate that the
kernel averaging approach to source localization performs well
and is robust to modelling errors. The simple form (normalized
average) of the kernel method makes it much more robust to mis-
modelling and noise than a least squares estimator. Simulations
also indicate that the averaging estimator performs well even when
the decay parameter, β, is not known exactly. It may be possible to
modify both the least squares and kernel averaging estimators so
that they jointly estimate (or are adaptive to) β, but this will add to
the nonlinearity of either scheme and could worsen performance.
However, this is an open issue which we plan to investigate further.

Another benefit of the averaging estimator over the least
squares estimator is that it is much simpler to compute. The opti-
mal least squares location estimator is generally a nonlinear func-
tion of the data and requires a complicated nonconvex optimiza-
tion. We also remark that the least squares estimator described in
Section 4 is specifically designed for an isotropic energy source. If
the source is not isotropic then a different model must be formu-

lated and direction or orientation parameters must also be specified
or estimated. On the other hand, the kernel averaging estimator
simply requires that the mean of the energy distribution be identi-
cal to the true source location. For example, if the energy profile is
ellipsoidal or otherwise symmetric about the source location, this
will still be acceptable for the kernel averaging method. Ultimately
we would like to develop a practical, robust, decentralized scheme
for detecting the presence of, determining the number of, and lo-
calizing multiple sources. This is a very challenging problem and
there are many open issues which still need to be addressed.
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