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ABSTRACT

A binary decentralized detection problem is studied in which
a collection of wireless sensor nodes provides relevant in-
formation about their environment to a fusion center. The
observations at the nodes are samples of a finite state Markov
process under each hypothesis. The nodes transmit their
data to a fusion center over a multiple access channel. Upon
reception of the information, the fusion center selects one of
the two possible hypotheses. It is assumed that the sensor
system is constrained by the capacity of the multiple ac-
cess channel over which the sensor nodes are transmitting.
Thus, as the node density increases, the sensor observations
get more correlated, and, furthermore, fewer bits can be
transmitted by each sensor node. A framework is presented
in this paper for deriving design guidelines relating sensor
density to system performance under a total communica-
tion constraint. The framework is based on large deviation
theory applied to the asymptotic regime where the number
of sensor nodes is large. This framework is applied to a
specific example to compare the gains offered by having a
higher node density with the benefits of getting detailed in-
formation from each sensor.

1. STATEMENT OF THE PROBLEM

Wireless sensor systems are often subject to strict power
constraints, and wireless sensor nodes must operate on small
energy budgets [1]. Accordingly, we seek to better under-
stand the interplay between resource allocation and overall
performance in such sensor systems.

In the system that we consider, the sensors are assumed
to communicate to the fusion center on a multiple access
channel. The achievable rate region for this channel with
an appropriate encoding scheme may depend on bandwidth,
power, noise density, and maximum tolerable bit error rate
at the output of the decoder. In this work, we disregard the
specifics of these parameters and assume a constraint on the
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sum rate from the sensors to the fusion center. Furthermore,
we neglect possible communication errors in the transmit-
ted bits. In other words, we assume that the sensor nodes
can transmit reliably at a maximum sum rate of R bits per
channel use.

To allow a fair comparison between competing designs,
we assume that the wireless resources available are identical
regardless of implementation specifics, and therefore that all
of these systems are subject to the same capacity constraint
R. It is therefore of interest to explore how to best allocate
these R bits among sensor nodes. More specifically, the de-
centralized detection design problem consists of selecting
integers n and D, where n represents the total number of
sensor nodes in the system and D is the number of admis-
sible messages per sensor node, to minimize the probability
of error at the fusion center subject to the capacity constraint

n∑
�=1

�log2 (D)� ≤ R. (1)

This detection framework where a wireless sensor network
is subject to a total capacity constraint was first introduced
by us in [2]. This framework can be employed to show that,
for conditionally independent and identically distributed ob-
servations, the gain offered by having more sensors often
surpasses the benefits of getting detailed information from
each sensor node. Evidence supporting this assertion in a
more encompassing setting can also be found in subsequent
papers [3, 4].

Most results on the topic of decentralized detection as-
sume that the observations are conditionally independent
across sensors. Much less is known about the more general
setting where the observations are conditionally dependent.
Yet, as sensor nodes are packed more densely in a finite re-
gion, it is reasonable to expect their observations to become
increasingly correlated. We therefore expand our study of
decentralized detection with a total capacity constraint to
the scenario where the dependence among observations in-
creases with sensor density.

The scenario we consider is one where the sensors sam-
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ple a spatial stochastic process X(s) on a line, where s rep-
resents the position on the line. The stochastic process can
take on one to two possible forms X0(s) and X1(s), corre-
sponding to the hypotheses H0 and H1, respectively. The
processes X0(s) and X1(s) are assumed to be finite-state
stationary and ergodic Markov processes, with generator
matrices Q0 and Q1, respectively. Denote the finite state
space by Σ. Without loss of generality, this space can be
identified with the set {1, 2, . . . , |Σ|}. The stationary prob-
ability distribution of the states under hypothesis Hj is de-
noted by πj(x), x ∈ Σ, which satisfies the conditions
[πj(1) . . . πj(|Σ|)]Qj = 0 and

∑
x∈Σ πj(x) = 1.

Denote the position of the active sensor nodes by 0 ≤
d1 < . . . < dn < ∞. For convenience we assume that
the sensor nodes are equally spaced with dk = d(k − 1),
for k = 1, . . . , n and d > 0. The sampled random variable
observed at each sensor node under the two hypotheses is
then given by

H0 : Xk = X0(dk) = X0(d(k − 1)), k = 1, . . . , n
H1 : Xk = X1(dk) = X1(d(k − 1)), k = 1, . . . , n.

Note that, under hypothesis Hj , the sequence of observa-
tions {Xk} forms a discrete Markov chain with probability
transition matrix

P j = eQjd.

Let P j = {pj(�,m)}�,m∈Σ be the stochastic matrix de-
scribed above. The Markov probability measure P σ

j associ-
ated with the transition probability matrix P j and with the
initial state σ ∈ Σ can be written as

P σ
j (X1 = x1,X2 = x2, . . . , Xn = xn)

= pj(σ, x1)
n−1∏
i=1

pj(xi, xi+1).

Sensor node k computes a summary Uk = γ(Xk) of its
own observation, and sends it to the fusion center. As men-
tioned before, the information is sent over a multiple access
channel and it is assumed to be conveyed reliably. Upon re-
ception of the data, the fusion center selects one of the two
possible hypotheses.

The design goal is to find an admissible strategy that
minimizes the probability of decision error at the fusion
center. For rate R, an admissible strategy consists of an
integer n denoting the number of sensor nodes, and a com-
pression rule γ : Σ → {1, 2, . . . ,D} such that (1) holds.
For fixed sensor compression rule γ, it is well-known that
the class of likelihood ratio tests in which the normalized
log-likelihood ratio of the sensor outputs is compared to a
threshold is optimal at the fusion center [5]. When the sen-
sor observations are conditionally independent, the normal-
ized log-likelihood ratio reduces to

L (u) =
1
n

n∑
k=1

log
P1(uk)
P0(uk)

=
1
n

n∑
k=1

f(uk), (2)

where f(·) is given by

f(u) � log

(∑
x∈γ−1(u) π1(x)∑
x∈γ−1(u) π0(x)

)
.

For the more general situation where observations are con-
ditionally dependent, the normalized log-likelihood ratio at
the fusion center does not admit such a simple form. In
these cases, it is usually hard to assess overall performance
and to find an optimal system configuration. We circumvent
this difficulty by restricting the form of the decision rule at
the fusion center. Throughout, we assume that the fusion
center makes decisions using a threshold rule on

Ln =
1
n

n∑
k=1

f(Uk). (3)

It should be pointed out that this decision rule is not nec-
essarily optimal when the observations across sensor nodes
become increasingly correlated. However, it should perform
well when the observations are only mildly correlated. Our
goal is twofold: (i) we want to characterize overall perfor-
mance as a function of correlation among observations, and
(ii) we wish to study how correlation affects sensor density.

In our work, we are primarily interested in asymptotic
regimes where the number of sensor nodes and the area
covered by these nodes go to infinity. Asymptotic analy-
sis where the number of nodes becomes large is well-suited
for sensor networks since some of these networks are envi-
sioned to contain thousands of nodes. For any reasonable
system, the probability of error at the fusion center goes to
zero exponentially fast as n grows unbounded. It is then nat-
ural to compare system designs based on their exponential
rate of convergence to zero. As mentioned before, we wish
to provide a fair comparison of competing designs based on
their needs in terms of wireless resources. This is achieved
by considering error exponents as a function of total bit re-
quirement:

− lim
R→∞

log Pe(R)
R

. (4)

We emphasize that the number of nodes increases linearly
with R. The exponential scaling in terms of R is instrumen-
tal in comparing systems with equal resources. The perfor-
mance metric of (4) should provide good design guidelines
for systems with a large enough rate constraint and coverage
area.

2. LARGE SYSTEM ANALYSIS

In this section, we use results from the theory of large devi-
ations to characterize the error exponent of a threshold test
on the empirical means

Ln =
1
n

n∑
k=1

f(Uk) =
1
n

n∑
k=1

f(γ(Xk)).
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Let P = {p(�,m)}�,m∈Σ be the true transition probability
matrix of the Markov chain {Xk}. Associate with every
λ ∈ R a nonnegative matrix P λ, whose elements are

pλ(�,m) = p(�,m)eλf(γ(�)), �,m ∈ Σ. (5)

Note that P being irreducible implies that P λ is also irre-
ducible. For each λ ∈ R, let ρ (P λ) denote the Perron-
Frobenius eigenvalue of the matrix P λ (see, e.g., [6]). The
error exponent of a threshold test on Ln is characterized by
the following theorem, whose proof can be found in Dembo
and Zeitouni [7].

Theorem 1. For every z ∈ R, define

I(z) = sup
λ∈R

{λz − log ρ (P λ)} . (6)

where P λ is as defined in (5). Then, the empirical mean Ln

satisfies the large deviation principle with the convex, good
rate function I(·). Explicitly, for any set Γ ⊆ R, and any
initial state σ,

− inf
z∈Γo

I(z) ≤ lim inf
n→∞

1
n

log P σ(Ln ∈ Γ)

≤ lim sup
n→∞

1
n

log P σ(Ln ∈ Γ) ≤ − inf
z∈Γ̄

I(z).

where Γo and Γ̄ denote the interior and closure of Γ, re-
spectively.

3. DENSITY ANALYSIS

Theorem 1 can be employed to assess the performance loss
due to dependence across observations, and to study how
correlation impacts optimal sensor density. We illustrate
this with a simple example. The same procedure can be ap-
plied to more complex systems. We study the basic scenario
where the observed stochastic process consists of one of two
possible Markov signals, with common support |Σ| = 4.
We choose the two generator matrices to be

Q0 =

⎡
⎢⎢⎣

−q q 0 0
rq −(1 + r)q q 0
0 rq −(1 + r)q q
0 0 rq −rq

⎤
⎥⎥⎦

and

Q1 =

⎡
⎢⎢⎣

−rq rq 0 0
q −(1 + r)q rq 0
0 q −(1 + r)q rq
0 0 q −q

⎤
⎥⎥⎦ ,

where r ≥ 1. In some sense, this is the simplest Markov
scenario where the effects of correlation and density can
be analyzed. Note that the two stochastic signals become

harder to distinguish as r → 1, while dependence among
observations decreases as q → ∞. There are nine possible
compression rules, out of which we examine two:

γ1(X) =
{

1, X ∈ {1, 2}
2, X ∈ {3, 4} and γ2(X) = X.

We compare the two corresponding systems by letting the
total area covered by the network go to infinity, with the un-
derstanding that the amount of wireless resources available
per unit area is fixed. In other words, the rate R and the sys-
tem coverage grow together with their ratio kept constant.
This analysis should yield meaningful guidelines for the al-
location of system resources in large sensor systems. In par-
ticular, these guidelines provide an educated first guess for
the design of a large system where the area and the system
resources are prespecified.

Since sensor nodes using function γ1(·) transmit one bit
of information per channel access while nodes using func-
tion γ2(·) send two bit of data, a system subject to a total rate
constraint can potentially comprise twice as many nodes of
type γ1. Specifically, for a total rate constraint R, a system
may either employ R nodes of type γ1, or

⌊
R
2

⌋
nodes of type

γ2. Because of the symmetry in the problem, we gather that
the best decision threshold is zero for the two systems. Fur-
thermore, the corresponding error exponents are captured
by the value of the good rate function I(·) evaluated at zero.

For a sequence of systems, each with R sensor nodes of
type γ1, the error exponent is given by

− lim
R→∞

log Pe(R)
R

= − lim
n→∞

1
n

log P σ
0 (Ln > 0)

= − lim
n→∞

1
n

log P σ
1 (Ln < 0) = I1(0)

where the good rate function I1(·) is given by (6) with P =
eQ0d and P λ defined by

pλ(�,m) = p(�,m)eλf(γ1(�)), �,m ∈ Σ.

Similarly, for a sequence of systems, each with
⌊

R
2

⌋
qua-

ternary sensor nodes of type γ2, the error exponent is given
by

− lim
R→∞

log Pe(R)
R

=
1
2
I2(0)

where the good rate function I2(·) is also given by (6) with
P = eQ02d and

pλ(�,m) = p(�,m)eλf(γ2(�)), �,m ∈ Σ.

Since fewer sensor nodes are employed in the latter sequence
of systems, the distance between adjacent nodes is twice as
large.

Figure 1 shows the performance of the two systems in
terms of error exponent. Note that the Chernoff bound cor-
responding to conditionally independent observations also

V - 1051

➡ ➡



0 1 2 3 4 5
0

0.05

0.1

0.15

0.2

0.25
E
rr

or
E
xp

on
en

t

Dependence Coefficient q

Fig. 1. Error exponent as a function of the dependence co-
efficient q, with parameters r = 2 and d = 1. The solid line
corresponds to function γ1, while the dashed line describes
performance under γ2. Note that the distance between adja-
cent nodes is 1 for system 1, and 2 for system 2.

appears on the graphs for purpose of comparison (the hor-
izontal dotted lines). In this figure, the correlation among
observation is varied by changing the value of q in Q0 and
Q1. Not surprisingly, performance decreases as correlation
increases. However, it is interesting to note that having more
sensor nodes with each node sending fewer bits of informa-
tion performs very well irrespectively of the dependence co-
efficient q. When observations are strongly correlated, the
two schemes corresponding to γ1 and γ2 essentially pro-
vides identical performance. On the other hand, as adjacent
observations become only weakly dependent, using binary
sensor nodes is significantly better.

4. CONCLUSIONS AND DISCUSSION

We considered a decentralized detection problem in which
a network of wireless sensors provides relevant information
about the state of nature to a fusion center. We addressed the
specific case where the sensor observations form a Markov
chain under both hypotheses and the sensor network is con-
strained by the capacity of the multiple access channel over
which the wireless sensors are transmitting. We showed
through an example that the gain offered by having more
nodes often outperforms the benefits of getting detailed in-
formation from each sensor even if the sensor observations
get more correlated as the density increases. The framework
introduced in this paper can be employed to characterize the
performance of more complex systems. The finite observa-
tion space assumption is not a limitation for practical sys-
tems, given that sensor precision is limited. The Markov

assumption one the other hand is more restrictive, yet it is
much more encompassing than the traditional conditional
independence assumption.
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