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1. INTRODUCTION

The design and deployment of sensor networks (SNETs) for
decision making pose fundamental challenges due to energy
constraints and uncertain environments. In this paper we fo-
cus on one such problem where minimization of communi-
cation costs due to information exchange is required subject
to end to end information quality constraints. Specifically,
we develop solutions for detection of distributed events, sources,
or abnormalities that are localized, i.e., only a small num-
ber of sensors in the vicinity of the phenomena are in the
field of observation. This problem complements the stan-
dard decentralized detection problem, where noisy informa-
tion about a global event is measured by the entire network.
The global phenomena by itself can be one of several differ-
ent discrete possibilities and researchers have investigated
several architectures within this context.

Our objective in this paper is to characterize the funda-
mental trade offs between global performance (false alarms
and miss rate) and communication cost. We develop a frame-
work to minimize the communication cost subject to worst-
case misclassification constraints by making use of the false
discovery rate (FDR) concept along with an optimal local
measure transformation at each sensor node. The prelimi-
nary results show that the FDR concept applied in a sensor
networks context leads to significant reduction in the com-
munication cost of the system.

2. DISCUSSION

The general problem described here is related to the so called
multiple comparison tests (MCPs) in the statistical litera-
ture [1] as well as the bio-statistical communities. The setup
consists of a collection of sample observations, y, each drawn
either with the probability distribution, fY (y/H0), which
corresponds to the null hypothesis, H0, or with fY (y/H1),
which corresponds to the positive hypothesis. The problem
is to partition the samples in to two bins corresponding to
null and positive hypothesis respectively. A general parti-
tion can be associated with a decision rule for each sensor
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node, k, mapping all the observations into the two different
hypothesis, i.e.,

uk : yN
1 �→ {0, 1}, k = 1, 2, . . . , m (1)

The table below summarizes the quantities involved in the
MCPs.

Declared H0 Declared H1 Total
True H0 U V m0

True H1 T S m − m0

Total m − R R N

As a possible solution to such problems, Benjamini and
Hochberg introduced the FDR procedure [1]. This concept,
instead of trying to control the probability of making any
false alarms, controls the expected ratio of the number of
observations falsely declared as significant, (V ), to the total
number of observations declared as significant, (R), i.e.,

FDR = E(Q) = E{V/V + S} = E{V/R}

It is easy to establish that the false alarm rate [1] is bounded
from below by FDR, i.e.,

FWER = Prob{V ≥ 1} ≥ E(Q) = FDR

Although it is a weaker notion in terms of false alarm prob-
ability, the significant increase in the power of detection
makes it a desirable approach in many problems.

FDR procedure is described as follows:

1. Calculate the p values for all the observations
2. Order the p values in ascending order
3. Find the largest index, imax, such that p(i) ≤ i

m
γ

4. Declare p(j) significant for 0 ≤ j ≤ imax

The following definition of p value of a random variable X
is used in this paper:

p(X) =

∫
∞

X

f0(t)dt = 1 − F0(X) (2)

where f0 is the pdf of the observations under H0, and γ is
the FDR constraint. It is obvious that p value of a random
variable is also a random variable. Throughout the paper,
the p value of the random variable X0, where X0 comes
from H0, is denoted by P0, and similarly for P1.
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Lemma 2.1 The random variable P0 is distributed uniformly
in (0,1) regardless of the distribution of X0.

Theorem 2.2 For independent test statistics under null hy-
pothesis, and for any configuration of positive hypotheses,
the above procedure controls the FDR at level γ.

The reader is referred to the original work [1] for a better
understanding of the problem context of this approach.

Lemma 2.1 and theorem 2.2 lead to the following propo-
sition.

Proposition 2.3 False discovery rate constraint is satisfied
for FDR procedures applied along with transformations that
are measure invariant with respect to the distribution under
H0.

The FDR procedure suffers from two significant draw-
backs that make it unsuitable in our applications:

• The focus of this procedure primarily is to reduce
false positives and there is no control over the false
negatives.

• The procedure does not lend itself easily to decentral-
ized implementation.

The main contributions in this paper are two fold:

• We develop a new FDR type procedure that increases
power of detection through a convenient measure pre-
serving transformation.

• The new procedure lends itself to efficient decentral-
ization.

3. ADAPTIVE VS NON-ADAPTIVE DECISION
RULES

An adaptive decision rule allows some form of collaboration
between the sensor nodes and requires introduction of time
and a “not yet decided state”. For this purpose, we allow
each sensor to take on three values uk(·) ∈ {φ, 0, 1}, where
φ corresponds to undecided state. In the beginning all the
sensors are undecided. At time t + 1, an undecided sensor,
k, updates its decision based on its local observation, yk,
and all the messages, U t received (note that only positive
messages (i.e., equal to 1) are received) from other sensor
nodes up to time period t, i.e.,

uk(t + 1) : Yk × U t �→ {φ, 0, 1}

We are now ready to formalize our problem. The objec-
tive is to minimize the number of expected misses subject
to an FDR and communication constraint.

minimize E(T ) subject to:

E(V/R) ≤ γ,
∑
i,t

c(ui(0)...ui(t)) ≤ α

where c is the cost of communicating a decision:

c(ui(0)...ui(t)) =

{
1 if ui(τ < t) �= 1 and ui(t) = 1

0 else

The second constraint limits transmission bit budget to α.

3.1. Distributed Thresholding Strategies

Using the FDR procedure described in section 2 as the basis
of decision rule at time t, an algorithm can be established
to perform the FDR procedure in a distributed fashion. Al-
though a multi-layered approach can be used to solve more
challenging problems, a single layer algorithm will be de-
scribed for simplicity:

1. Each sensor calculates the p value of its observation,
pi, and tests pi with 1

m
γ

2. The sensor(s) with pi ≤ 1
m

γ declares its observa-
tion as significant, and communicates this decision
to other sensors by a suitable protocol, (assume l of
them declare their observations significant)

3. The decisions of the l sensors are fed back to the sys-
tem and all the sensors update their threshold to l+1

m
γ

4. Each sensor tests the p value of its data by the new
threshold and declares its data as significant accord-
ingly, (assume k more sensors declare their observa-
tions significant)

5. The new significant decisions are fed back to the sys-
tem again, and the new threshold is updated to l+k+1

m
γ

6. Steps 4 and 5 are repeated until when there is no more
sensors that declare their observations as significant
under the most current threshold, which is when the
process terminates.

4. DOMAIN TRANSFORMED FDR PROCEDURE

In many cases the adaptive solution that has been described
so far is sufficient. However, in some problems, the distribu-
tion of the observations may have characteristics which ac-
centuate the suboptimal nature of the FDR procedure. Specif-
ically, FDR procedure performs best when the p values of
the data that come from H1 are clustered near zero, and that
may not necessarily be the case as seen in the following ex-
ample.

Example Consider two Gaussian random variables with f0(x) ∼
N(0, 1) and f1(x) ∼ N(−4, 1), and consider the FDR con-
straint γ = 0.05. The goal is to detect as many samples of
P1 as possible from a mixture of samples subject to FDR
constraint, γ. In this case most of the realizations of the
random variable P1 are close to 1 rather than 0, and FDR
procedure described above will not declare them as signifi-
cant. The issue here is that the procedure terminates before
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the necessary threshold is met to detect the significant ob-
servations.

To overcome this problem, consider the following trans-
formation on the random variables P0 and P1:

P̂i = 1 − Pi, i = 0, 1 (3)

Since P0 is uniformly distributed in (0,1), it is obvious that
P̂0 is also uniformly distributed in (0,1). Observe, however,
that most of the realizations of P̂1 are close to 0. Therefore,
when the FDR procedure is performed on this new set of p
values, more of the observations coming from H1 will be
declared as significant, thus the detection power of the test
is increased. Furthermore the FDR constraint γ is still sat-
isfied since the transform preserves the U(0, 1) distribution
of the p values for the observations coming from H0.

In this section, a method is developed, which not only
solves the early termination problem of the distributed al-
gorithm, but also yields the best performance of FDR pro-
cedure, subject to the problem constraints. Conveniently, as
a result of this solution, E(T ) is also minimized within the
capabilities of FDR procedure.

4.1. A Measure Preserving Transform

FDR procedure does not assume knowledge of the distribu-
tion of observations under positive hypothesis. However, in
many problems, the distribution of the observations under
positive hypothesis is known, or can be estimated. Making
use of the assumption that the distributions of the observa-
tions are known under null and positive hypotheses, a trans-
formation in the p domain is introduced.

The transformation is simple in nature, and is a reorien-
tation of the p domain. Despite its simplicity, it has three
very important properties to note:

1. It preserves uniform distribution of p values under
null hypothesis,

2. It maps a non-monotonic or monotonically increasing
density of p values to a monotonically decreasing one,

3. After the p values are put in ascending order, the plot
of p values vs indices looks like a convex function
sampled at integer points.

4.1.1. Transformation of p Domain

Let g0 and g1 be the probability density functions of P0 and
P1 respectively. Define the transformation, Tn, on the p
domain described as follows:

1. Partition the range of g1 into n bins of size ε = 1/n,
preimages of which induce a partitioning of the p do-
main,

2. Index the partitions in p domain with a location index
i, i = 1..n according to their order of appearance as
p ranges from 0 to 1,

3. Index the partitions in p domain with area index j,
j = 1..n such that the jth partition has the jth largest
area under g1,

4. Beginning from j = 1, rearrange the locations of the
partitions so that the location index i of each bin is
equal to its area index, j.

Proposition 4.1 The sequence of transformations {Tn} con-
verges to a measurable transformation T .

The following procedure is referred as the Domain Trans-
formed FDR (DTFDR) procedure throughout the paper:

1. Apply the transformation T to p values of the obser-
vations

2. Follow the FDR procedure

The following propositions are direct results:

Proposition 4.2 T is a measure invariant transformation
for samples H0 in the p-value domain.

Proposition 4.3 The DTFDR procedure controls the false
discovery rate at the same level as the original FDR proce-
dure.

Proposition 4.4 The measure transformation T converts an
arbitrary density of p values for H1 to a monotonically de-
creasing density over (0, 1).

4.1.2. Improving the Performance of FDR Procedure

Before proceeding any further, the term “stochastically larger”
[4] must be introduced: We say that the random variable X
is stochastically larger than the random variable Y , denoted
X ≥st Y , when FX(a) ≤ FY (a) for all a.

Lemma 4.5 Let X1..Xn ∈ (0, 1) be n independent ran-
dom variables with common density function fX and let
Y1..Yn ∈ (0, 1) be n independent random variables with
common density function fY . Also, let X(i) and Y(i) de-
note the ith smallest of X1..Xn and Y1..Yn respectively. If
FX(t) ≥ FY (t) ∀t ∈ (0, 1), then Y(i) ≥st X(i).

Theorem 4.6 For any given data set with known distribu-
tions and any integer k, the probability of declaring the first
k values as significant is larger under the DTFDR proce-
dure than the FDR procedure.

4.2. Communication Costs

Apart from the gains in detection power of FDR procedure,
the transformation T leads to further advantages in commu-
nication costs. When H1 is a multi modal distribution the
linearly increasing FDR threshold can intersect the ordered
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p value curve at multiple locations. Hence early termina-
tion is possible if an ordered p value above the threshold
curve is discovered. However, the DTFDR procedure yields
a convex p value curve and overcomes this issue.

Lemma 4.7 The expected value of the ordered set of p val-
ues in the transformed domain are samples of a convex func-
tion.

Proposition 4.8 The communication cost of the system is
minimized by implementation of the DTFDR procedure.

5. EXPERIMENTAL RESULTS

We have tested the distributed algorithm on a field of sen-
sors of size 128x128, with a Gaussian noise assumption. On
the first layer, we set γ1 = .1 and for the second layer we
set γ2 = γ1/6 [2].

The two layer approach was implemented as follows:
For the first layer, sensors collaborated with J1 of their neigh-
boring sensors to generate local estimates. The random
variable tested at each sensor was wi = yi − ri, where
ri = 1

J1

∑J1

j=1 yj
i . Here yj

i denotes the observations of the
neighboring sensors. The p value of these random variables
were calculated and tested.

At the second layer, a similar approach was taken, how-
ever, only the sensors, who declared their observations to be
significant at the first layer, collaborated.

The results of this approach is compared with the imple-
mentation of a nonadaptive system, namely Bonferroni pro-
cedure, and a related procedure described recently by [3].
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Fig. 1. The sensor field model

(a) Layer 1 (b) Layer 2

Fig. 2. Boundary detection via distributed implementation
of FDR procedure

(a) Layer 1 (b) Layer 2

Fig. 3. Boundary detection via distributed implementation
of Bonferroni procedure

Fig. 4. Boundary detection via the method in [3]
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