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ABSTRACT

We present new algorithms for refining the estimates of the
eigenvectors of a real symmetric matrix. Using techniques
from calculus, we show that the algorithms converge locally
cubically fast. By this we mean that locally all eigenvalue-
eigenvector pairs simultaneously converge at a cubic rate.
This is in contrast to well known shifted QR algorithms,
which depending on the shifting strategy employed, have
only one (or at most a small subset) of the eigenvalue-eigen-
vector pairs converging cubically at any one time.

The algorithms are well suited to the situation where
one needs to compute the eigenvectors of a perturbed ma-
trix A + E based on a good estimate of the eigenvectors of
a matrix A. Such a situation frequently appears in tracking
applications.
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Poles of Attraction initiated by the Belgian State, Prime Minister’s Office
for Science, Technology and Culture. National ICT Australia is funded
by the Australian Government’s Department of Communications, Informa-
tion Technology and the Arts and the Australian Research Council through
Backing Australia’s Ability and the ICT Centre of Excellence Program.

1. INTRODUCTION

The well known Rayleigh Quotient Iteration (RQI) is an it-
erative algorithm by which a single eigenvector-eigenvalue
pair of a symmetric matrix A can be computedwith a locally
cubic rate of convergence. It is also well understood that the
RQI is implicitly performed in the shifted QR algorithm for
computing the full set of eigenvectors of A [2, 3].

The shifted QR algorithm is not suited to the problem of
computing the eigenvectors of a perturbed symmetric ma-
trix A + E given a good estimate of the eigenvectors of
A. There are two reasons for this. One is that efficient im-
plementation of the shifted QR algorithm requires a prepro-
cessing step of transforming the matrix into tridiagonal form
which needs to be recomputed from scratch if the matrix
changes. The second reason is that the shifted QR algorithm
employs deflation. Without deflation, the algorithm would
converge significantly more slowly. A pervasive myth is
that the shifted QR algorithm converges cubically, when in
fact it is only one eigenvector that is converging cubically
at a given moment in the algorithm’s operation. In [4] it
was shown that there are no scalar valued shift strategies to
ensure even quadratic convergence of the shifted QR algo-
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rithm. This indicates that either deflation or a matrix-valued
shift strategy is required for the shifted QR algorithm to be
efficient. For the adaptive eigenvector computation problem
deflation is not desirable and a matrix-valued shift strategy
might be computationally too complex.

Recently and independently the authors looked at devel-
oping algorithms in which all eigenvalue-eigenvector pairs
simultaneously converge cubically [1, 2, 4, 5, 6]. These al-
gorithms took the RQI as a starting point and then devel-
oped generalisations to the full matrix case. These algo-
rithms achieved simultaneous local cubic convergence of all
eigenvector-eigenvaluepairs without any deflation. A draw-
back of these algorithms was that they required one or more
orthogonalisations of the full set of vectors which is compu-
tationally inefficient. In this work we show that local cubic
convergence of all eigenvectors can be achieved with more
simple operations than full orthogonalisation. This comes at
the price of losing possible good global convergence prop-
erties in the algorithms of [1, 2, 6], but we maintain fast
local convergence which makes the algorithms useful for
adaptive applications.

The algorithms we present can be thought of as general-
isations of the RQI. Unlike other generalisations of the RQI
for computing invariant subspaces and eigenvectors that are
defined on Graßmannians or flag manifolds, our iterations
are defined on the product of spheres.

Notation: Let upper case letters denote matrices. Let the
lower case notation x(j) denote the j-th column of the ma-

trix X with entries xij . The symbol ‖X‖ =
√∑n

i,j=1 x2
ij

denotes the Frobenius norm. By X� we denote the trans-
pose of X . The set Sn−1 denotes the set of vectors in R

n

with unit norm. I denotes the identity matrix.

2. ALGORITHMS

The central computational step in our algorithms is the Ray-
leigh Quotient Iteration (RQI). The RQI is defined by the
mapping

r : Sn−1 → Sn−1, x �→ (A − x�AxI)−1x

‖(A − x�AxI)−1x‖ . (1)

It is well known that for an initial condition outside a
set of measure zero, the RQI converges to an eigenvector of
A = A� with an asymptotic cubic rate of convergence.

The RQI may converge to any eigenvector of A, even
one which is not the closest to the current estimate. A key
issue then, when extending the RQI to computing more than
one eigenvector is to try and prevent convergence to the
same eigenvector. This can be achieved, at least locally,
by exploiting the orthogonality property of the set of eigen-
vectors of A. The key idea is to transmit the information

obtained by the update of one eigenvector estimate to the
others. In the algorithm of [4, 5] this was achieved by a full
orthogonalisation of the set of vectors after performing RQI
on each in parallel. In an algorithm in [1, 6] it was done
by orthogonalisation of the full set after each RQI update of
one vector. Another closely related algorithm in [1, 6] also
achieved this by replacing the least recently updated vector
by a vector orthogonal to all the others before performing
the RQI update on it. In [2] it was discussed how these algo-
rithms relate to the well known shifted QR algorithm. These
algorithms all achieved local cubic convergence and some
of them even displayed good global convergence properties.

The algorithms proposed in this paper achieve local cu-
bic convergence even without a full orthogonalisation or the
computation of the orthogonal complement of the span of a
set of vectors.

Algorithm 2.1 performs an RQI on one column (eigen-
vector estimate) and then subtracts those components of the
other columns which lie in the direction of the updated one.
This is done to each column once per iteration of the algo-
rithm.

Algorithm 2.1 1. Initialise X0 = [x(1)
0 , x

(2)
0 , . . . , x

(n)
0 ]

∈ R
n×n such that X�

0 X0 = I . Let k = 0.

2. For i = 1, 2, . . . , n do:

(a) Evaluate x
(i)
k+1 = r(x(i)

k ).

(b) For j �= i, compute y = (I − x
(i)
k+1x

(i)�
k+1 )x(j)

k

and set x
(j)
k+1 = y/‖y‖.

3. Set Xk+1 = [x(1)
k+1, x

(2)
k+1, . . . , x

(n)
k+1].

4. If all x
(i)
k have converged to eigenvectors then stop,

otherwise goto 2.

Step 2.(b) of Algorithm 2.1 which projects the other vectors
onto the orthogonal complement of the vector most recently
updated, requires less computation than a full orthogonali-
sation and is more simple to implement since it requires less
memory storage.

Let
S := Sn−1 × . . . × Sn−1. (2)

Let A = A� be given with distinct eigenvalues. To remove
the discontinuities at the fixed points of r defined by (1) we
define another map, which we again call RQI. Consider the
map

r̂ : Sn−1 → Sn−1, x �→ adj(A − x�AxIn)x
‖ adj(A − x�AxIn)x‖ . (3)
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Here the operator adj denotes the classical adjoint, i.e., adj(X) =
X−1 · det(X). The differentiability properties of (3) are
well understood, see [4, 5]. We consider Algorithm 2.1 as
the self map

σ : S → S (4)

where
σ := σn ◦ · · · ◦ σ1 (5)

and for all i = 1, . . . , n

σi : S → S,

X �→ [
y(1), . . . , y(i−1), r̂(x(i)), y(i+1), . . . , y(n)

]
,

(6)

where for all j = 1, . . . , n with j �= i

y(j) :=

(
I − r̂(x(i))r̂(x(i))�

)
x(j)

‖ (
I − r̂(x(i))r̂(x(i))�

)
x(j)‖ . (7)

The following theorem proves that local cubic convergence
can be achieved by Algorithm 2.1. The proof uses the same
calculus approach utilised in [4] to prove local cubic con-
vergence of matrix eigenvector algorithms.

Theorem 2.1 Let A = A� be given with distinct eigen-
values. Assume that Algorithm 2.1 is initialised by an or-
thogonal matrix which is sufficiently close to an orthogonal
matrix consisting of eigenvectors of A. Using r̂ instead of
r, Algorithm 2.1 converges locally cubically fast.

PROOF (SKETCH). Exploiting the fact that the mapping σ
is smooth in an open neighborhood of the identity matrix
X∗ = I ∈ S we can show that the first and second deriva-
tives of σ at X∗ vanish. It is easily seen that for arbitrary
tangent elements H ∈ TX∗S the derivative

Dσ(X∗)H = Dσn(X∗) ◦ · · · ◦ Dσ1(X∗)H = 0. (8)

Eq. (8) holds true (i) by the chain rule, (ii) by the quadratic
convergenceof RQI induced by r̂, and (iii) by the fixed point
property of each σi, i.e., σi(X∗) = X∗, see [4, 5] for details.
Realising that asymptotically σ decouples into n individual
RQI iterations on the n columns of X∗ gives the result, be-
cause each individual RQI is cubically convergent in itself,
[4, 5]. �

Remark 2.1 Note that the iterations induced by r and r̂
roughly have the same dynamics. The difference is just in

signdet(A − x�AxI). (9)

Another way to look at these iterations would certainly be
as iterations on projective space RP

n−1 instead of Sn−1.
See also the comments in [7], but we will not go into details
here, we refer to the forthcoming paper by U. Helmke, K.
Hüper and J. Trumpf where RQI and its relation to different
Newton-type methods is revisited.

Algorithm 2.1 represents a reduction in complexity over
previous algorithms. Further simplifications are possible if
instead of projecting all columns onto the space orthogonal
to the one just updated, we project only the next column.
This modification gives:

Algorithm 2.2 1. Initialise X0 = [x(1)
0 , x

(2)
0 , . . . , x

(n)
0 ]

∈ R
n×n such that X�

0 X0 = I . Let k = 0.

2. For i = 1, 2, . . . , n do:

(a) Evaluate x
(i)
k+1 = r(x(i)

k ).

(b) If i �= n, compute y = (I − x
(i)
k+1x

(i)�
k+1 )x(i+1)

k

and set x
(i+1)
k+1 = y/‖y‖.

If i = n, compute y = (I −x
(i)
k+1x

(i)�
k+1 )x(1)

k and

set x
(1)
k+1 = y/‖y‖.

3. Set Xk+1 = [x(1)
k+1, x

(2)
k+1, . . . , x

(n)
k+1].

4. If all x
(i)
k have converged to eigenvectors then stop,

otherwise goto 2.

Using the same technique as for the proof of Theorem 2.1,
we have:

Theorem 2.2 Let A = A� be given with distinct eigen-
values. Assume that Algorithm 2.2 is initialised by an or-
thogonal matrix which is sufficiently close to an orthogonal
matrix consisting of eigenvectors of A. Then Algorithm 2.2
converges locally cubically fast.

3. NUMERICAL EXAMPLE

To illustrate the utility of our algorithms in non-stationary
environments, we consider a classical signal processing ex-
ample. Suppose we have a symmetric matrix A whose ele-
ments evolve according to an AR(1) process;

Ak+1 = αAk + Ek, Ek = E�
k . (10)

At each time instant k, we run each algorithm for just one
iteration (i.e. one run of step 2) and compare the eigen-
value estimates of our algorithms to MATLAB’s eig rou-
tine which employs a variation of the single shift QR algo-
rithm. We initialise A0 to be the diagonal matrix

A0 = diag{1, 2, 9, 10, 11}. (11)

The symmetric perturbation matrices Ek we have used have
elements drawn from a zero mean, variance 0.1 normal dis-
tribution, and we set α = 0.99.
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Fig. 1. Tracking of the eigenvalues of a time varying matrix.
See section 3 for details.

Figure 1 illustrates the power of the local cubic conver-
gence of our algorithms. The curves in the figure show the
evolution of the eigenvalues of matrices Ak as computed
by MATLAB’s eig routine. Also shown are the values
of the eigenvalues as computed by Algorithms 2.1 and 2.2.
The close proximity of the eigenvalues computed by our al-
gorithms to that of MATLAB illustrates the good tracking
capability of our algorithms. Whilst MATLAB performs
the shifted QR algorithms from scratch at each k, our algo-
rithms only require one iteration to keep track of the eigen-
values of A. In typical signal processing applications the
variation of the eigenspace is also slower than the above ex-
ample.

Although the algorithms are not meant for block com-
putations, it is interesting to note that Algorithm 2.1 also
displays good global convergence properties by converging
to the correct set of eigenvectors of a given matrix from
most initial conditions. Simulations show however, that it
requires more iterations than the algorithms in [1, 2] and [4]
which perform full orthogonalisation of the set of vectors in
each iteration. Algorithm 2.2, which is even less complex
than Algorithm 2.1 does not display good global conver-
gence.

4. DISCUSSION

The results of this paper suggest that a full orthogonalisation
of a set of eigenvector estimates is not required to prevent
RQI iterates from converging to the same eigenvector pro-
vided that we are sufficiently close to the true eigenvector
estimates. Furthermore, cubic convergence of all eigenvec-

tor estimates to the true eigenvectors is still achieved.
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